VRSP .. O&- 285 35

BOLT BERANTEHK A, N D NEWMAN INC

C ONSUILTI NG + DEVELOZPMTENT + RESTEARTCH

BBN Report No., 2378

Job No. 11501

THE LUNAR SCIENCES
NATURAL LANGUAGE INFORMATION SYSTEM:

FINAL REPORT

W.A. Woods
R. M. Kaplan

B. Nash-Webber

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts

June 15, 1972

Prepared for:

The Language PResearch Foundation
131 Mt. Auburn Street
Cambridge, Massachusetts

Supportsd by:
Contract No. NAS9-11157
NASA Manned Spacecraft Center

Pouston, Texas L N
ENCEZ I N85-71018
(NASA-CR-128538) THE LUNAR SC;aNC;S NAIEBAL N8
LANGUAGE INPORMATICN SYSTEX Final 23%02
(Boit, Beranek, and Newman, Inc.) Inclas

00/82 13285

Listribution of this document is unlimited. It may be released

to’ the clearinghouse, Department of Cofmerce for sale to the
general public.

CAMBRIDGE NEW YORK CHICAGO LOS ANGELES SAN FRANCISCO

THE LUNAR SCIENCES NATURAL LANGUAGE INFORMATION SYSTEM:
FINAL REPORT

W.A., Woods
R.l1. Kaplan

B. Nash-Webber

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

June 1972

CONTENTS

PrefaCe ..-‘o...-..lol.OIOO'...Q...O.'..OI-.ooo-..-.oo.t.

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.

Chapter 5.

Introductioneeeenrnciencseecccccceaoceens
The Analysis SyStemM ...ieereeceescecoccenonss
The GramMMAr .uueeseceececesessecsecscocasnsess
Semantic Interpretation Strategies

COnClLISion € 8 0 00 9990060000000 000000 e0ssee0esTE

References 9 50 00 00 00200 0NOLOLELS PSS LRSI OEIEBELIOCEIEDPEOIOEBLOEBEELE

Appendices

A. The LSNLIS USQI"S Guide 6 2000800008000 00 0000000000008

+ The Transition Network GramMarceeeceoveeeesnss.

B
C. selTlantic RU.leS LA A A L L L N R I I I R R I R S
D

. Documentation Of Functions ® 8 60 0000000050000 e

E. The Organization of the Dictionaryeeeeeceecces

F' The Retrieval Component e e s e 0 go P ®P P00t 0 000t

G. Examples

Page

iii

PRECEDING PAGE BLANK NOT FILX{1%

PREFACE

This report describes the current state of a two-year
research project aimed toward the development of a prototype
natural language question-answering system for lunar geologists.
During these two years, the project has made considerable progress
toward the ultimate goal of providing a general purpose natural
language interface between men and machines. The project has built
on the results of previous work in natural language understanding
and is itself merely a stepping stone on the path of discovery
that may someday make computers as generally available and con-

veniently accessible as one's next-door neighbor.

The Lunar Sciences Natural Language Information System
(LSNLIS) is the result of these two years of joint effort by Bolt,
Beranek, and Newman, and the Language Research Foundation, Cambridge,
Mass. It is an experimental, research prototype of a question-
answering system to enable a lunar geologist to conveniently access,
compare, and evaluate the chemical analysis data on lunar rock and
soil composition that is accumulating as a result of the Apollo
moon missions. The objective of the research has been to develop a
natural language understanding facility sufficiently natural and
complete that the task of selecting the wording for a complex
request becomes a negligible effort for the geologist user. Such
a goal has not been achieved by any previous "natural-language"

question-answering system.,

Chapter 1 of the report gives a brief introduction to the
system and an explanation of its goals and objectives. Chapter 5
contains a discussion of the capabilities of the current system
and an evaluation of the prospects for further development. 1In
between, Chapters 2, 3, and 4 give more detailed descriptions of
the analysis system, the English grammar it contains, and the
general techniques and strategies of semantic interpretation used

to interpret the meanings of the user's reguests.,

iii

Appendices to the report contain a brief users manual
and a collection of examples of the system's performance (which may
be useful to the casual reader in establishing a concrete under-
standing of what the system does) as well as complete listings of

grammar and semantic rules and detailed system documentation.

In addition to the authors, the following staff have

participated in the project:

Joe Becker
Dan Bobrow
Ben Wegbreit

We are also especially grateful to Gail Hedtler and Elsie Leavitt

for assistance in preparing this report.

This report expands, updates, and supercedes BBN Report
#2265 (Woods & Kaplan, 1971) which described the state of the

project at the end of its first year.

W. Woods
June, 1972

iv

Chapter 1

INTRODUCTION

1.1 Background and Objectives

The Lunar Sciences Natural Language Information System (LSNLIS)
is a prototype computer system which allows English language access
to a large data base of lunar sample information. The system
was developed jointly by Bolt Beranek and Newman Inc. and
Language Research Foundation, Cambridge, Massachusetts for the

NASA Manned Spacecraft Center, Houston, Texas.

The motivation for the LSNLIS project arises from the diffi-
culty of obtaining the basic information required by the working
scientist to formulate and test his hvpotheses. The data that bear
on a hypothesis may be scattered through the literature in many
different papers, and the task of finding the papers, collecting
the information, standardizing the units, and malking tuae necessary
computations for a given application, is a formidable task. More-
over, when the results are in and the computation has been maade,
other questions are suggested to the scientist by the results, and
the process begine again. Imagine instead that the published
findings had already been collected into a computer system, which
not only could give references to the literature, but wiich
actually "understood"” the numbers and measurements reportecd in the
documnents and was capable of performing calculations on these
numbers. The evidence for or against a given hypothesis could
then be obtained in a matter of minutes instead of days or weeks
or months. 1In such a systcm, the remaining obstacle to the
scientist would be the task of discovering whether the data base
contained the necessary information for his need, finding out the
formats of the tables, the notations used, units of measurement,

etc., and learning how to use the system--specifically, learning

a programming language for expressing requests. Imagine, further,
then, that this computer system could understand the scientist's
natural language so that the scientist could merely state his
request in English and the system would be capable of understanding
what information was needed and either provide it (by retrieval or
computation) or tell the user that the reguest was beyond the scope
of its data base. The goals of the LSNLIS project are to develop

a system which is as close to this idealized goal as the present
state of the art allows, and do it in such a way that continual
extensions of the system's capabilities can be made to converge on

this goal sometime in the future.

There are two important reasons why one might want to
use English as a mode of communication between a man and a machine.
First, the man already knows his natural language and if he is to
use a computer seldom or as a minor part of his work, then he may
not have the time or inclination to learn a formal machine language.
Second, the human thinks in his native language, and if the mode
of communication involves the free and immediate communication of
ideas to the machine which the user is conceiving in the course of
the interaction, then the additional effort required for the human
to translate his ideas into another language more suitable to the
machine may slow down or otherwise interfere with the interaction.
English is therefore an attractive medium because the human can

express his ideas in the form in which they occur to him,

1.1.1 Can We Build Such a Svstem?

Although the state of the art in "understanding" natural
language by machine is still very limited, significant advances
in this area have been made in recent years. Since Simmons'
first survey of question answering systems, (Simmons, 1965), our
understanding of the mysterious "semantic interpretation” component

has been made more clear bv work such as VWoods (1967,1968), and

the techniques for mechanically parsing natural language sentences
have been advanced by the advent of transition network grammars

and their parsing algorithms (Woods, 1969,1970). The field is

now at the point where prototype applications to real problems

can make significant contributions to our understanding of the
problems of natural language communication with machines. It must
be realized, that such applications are still essentially research
vehicles, since the problems of mechanical understanding of natural
language remain far from solution. However, by using real problems
(rather than imaginary toy problems) as the vehicles for such
research, one can not only focus the effort on problemns in need of
solution, but may also reap the additional benefit cf producing a
system which will perform (in its limited way) a task which someone

really wants done. The LSNLIS prototync is such an anplication.

1.1.2 Method of Aopnroach

The method of approach wiiich we have adonted in this study
has been to look ahead to the potential capabilities for a future
LSNLIS system, and to adopt general solutions to nroblens that
will remain valid for apnlicaticns of considerably greater scope
than the current project. We have therefore chosen to implement
the retrieval component withiin a general scrantic franewori
(sece Woods, 176C) and to vrovide a comprehensive and rigorous
grammar of the subsct of English involved. We hi¢ve an existing
parsing system for transition nctwork grammars (Woods, 1969,1970)
to provide a powerful gencral parsing capability within reasonab.le
amounts of processing time, and have operated on the resulting
narse trees with a general vpurpose, rule-driven semantic inter-
pretation procedure (Woods, 1967,1968) for transforming them into
representations of their meanings. Although the goal of accepting
an input reauest in any phrasing which a user might ask is one
which will require additional grammar development and semantic
work, the syvstem has already achieved considerahle proqgress
towards this goal, and the components and oraganization which
we have used in building the svstem permit continual aradual

evolution towards its achievement.

1.3

All of the components of the system have been implemented
in BBN-LISP on the PDP-10 computer at LBN in Cambridge, Mass.,
running under the TENEX time sharing system with hardware paging
and a virtual core memory for each user of up to 256K. Although
there is considerable overhead in running time for programs written
in LISP and executed in a paged environment, the flexibility of
this system has been a critical factor in the development of the

present level of capability within the time scale of the contract.

The design of the current system was carried out in a way
that attempted to maximize the flexibility for such basic changes
as: changing notations in dictionaries, changing parsing strategics,
and modifying semantic interpretation rules and procedures; anc
indeed all of these hove been cianged extensively in the course
of this project in order to achiecve the current level of perfor-
mance. Thus the current svstem represents the result of consider-
able evolution which would not have been possible vitliin tuis time
scale with a more rigid stvle of programrming or a less flexible

programming language.

1.2 Capabilities of the Current Svstem

The current LSNLIS nrototvpe allows a lunar scientist to
ask questions, compute averages and ratios, and make selective
listings based on the information in a chemical analysis data
table. He can also retrieve references from a keyphrase index
and make changes in the data hase. The system permits the user
to easilv compmare the measurements of different researchers,
compare the concentrations of elements or isotopes in different
types of samples or in different phases of a sarmle, compute
averages over various classes of samnles, conute ratios of two
constituents of a sanmple, etc.--all in streightforward natural

English,

The system removes from the user the burden of learning the
detailed formats and codes of the data base tables, or learning a
special programming language. For example, the system knows the
various ways that a uscr may refer to a particular class of
samples, it knows whether a given element is stored in the data
base in terms of its elemental concentration or the concentration
of its oxide, it knows what abbreviations of mineral names have
been used in the tables, etc., and it converts the user's request
into the appropriate form to agree with the data base tables,
regardless of the form in which he actually makes his request.
Thus, the present system has already made significant strides
toward making the communication with the machine so natural and
conveneint that it need not interfere with the researcher's

train of thought.

In the following sections we will present a suoerficial
description of the svstem and the kinds of opcrations it performs.
More detailed descriptions of the organization of the svstem
and the way it operates are given in chanters 2, 3, and 4, and

in the appendices.

1.2.1 System Components

The LSNLIS system consists of three major components--a
transition network parser with a large grammar of knglish and a
large dictionary, a general purpose semantic interpretation
component, and a retrieval component consisting of the data base
and a collection of general purjpose and spccific retrieval
functions. The parser performs a detailed syntactic analysis of
the user's question and passes the resulting parsing to the semantic
interpretation component for translation into thie formal request

language of the retrieval component. The first two corponents of
the svstem thus function to translate the user's request into a
program in the formal request language whicii will compute the
answer to the question. This program is then executed in the

retrieval component to produce the answer.

1.5

The system is operational on the TENEX time-sharing
system in two 256K tasks (called "forks")--one containing
the parser, interpreter, grammar and dictionary, and the
other containing the data base and retrieval functions.
Formal requests and answers to questions are passed between
the two forks by means of file buffers. This division of
the system between language processing component and
retrieval component would make it easy to operate in a mode
in which the language processing component resided on one
computer and the retrieval component on another computer

somewhere else.

The LSNLIS system presently contains a dictionary of
approximately 3500 words consisting of a selection of general
English vocabulary and a large technical vocabulary of
geological and chemical terms. It's grammar is a transition
network grammar of the type described in Woods {1969, 1970)
and produces output in the form of Chomskv-tvpe deep structures.
This output is translated into formal requests for the retrieval

component by a general purpose, rule-driven semantic interpreter.

1.2.2 The Data Base

The LSHLIS svstem is intended to eventually handle any number
of data base files with different structures and characteristics.
However, for the initial prototype, two data base files were
provided by "MSC. One is a 13,000 line tai:le of chemical and age
analyses of the Apollo 11 samples extractec fren tiie reports of
the First Annual Lunar Science Conference, and the scecond is a
keyphrase index to those reports. Sanples of these two data bases
are shown 1in figures 2-9 and 2-10. The first contains entries
specifying the concentration of some constituent in some phase
of some sample, together with a reference to the article in which
the measurement was reported. (There are generally several entries
for each combination of sample, phase, and constituent--measured
by different investigators.) The second 1s a list of keyphrases

and documents which have been indexed by tL:acm,

1.6

The major thrust of this project has been the develonment
of the parsing and semantic interpretation components to handle
the natural language querying aspect of the problem. The retrieval
component was implemented primarily to provide a complete on-iine
environment for carrying out the research. Thus, the retrieval
component has been implemented in a relatively straightforward
manner using the TENEX system's automatic paging facility to take
care of the problems of memory allocation so that we could devote
most of our effort to the natural language problems. Since the
retrieval component resides in an entirely separate forl inter-
faced via the general purposc request language discussed above,
there is no difficulty in substituting a more sophisticated

retrieval component later.

When an input reaquest has been processed in the Inglish
processor fork, the resulting formal request is communicated to
the retricval fork via a file buffer and control is passcd to
the retricval fork until the request has heen executed. “he answer
is then returned to the user via a file buffer and the Englisn
processcr fork resumes control. This organization reans that in
principal, there would be little difference whether the retrioval
component resided in another fork of the TENLX svsteri or in another
computer (e.g. at llouston) connected by telephone lines to tic

BBMN computer.

1.2.3 1Intended Types of Questions

Pefore beginning a discussion of the cavabilities of the
LSNLIS system, it is important to recognize a sharp distinction
between the types of questions which the prototype svstem will
now handle, the tvpes of questions toward which it aspires, and
the tvypes of questions which in principle could be asked, but
which we have no intentions of handling. f“he distincticn between
the first two types obviously changes with time, since new con-
structions are continually being added to the repertory of the

system, even as this report is being written. This distinction

1.7

is primarily a measure of how far we have progressed toward our
goals. A more important distinction is that between guestions

for which the system is intended and those for which it is not.

In designing the svstem, we assume that the aduestions will
be asked by a scientist with an interest in obtaining information
and that they will be stated in a direct and straightforward
manner. Thus, we are especially concerned with handling con-

structions which might be used by such a user, and we do not want

to devote extensive effort to handling "frivolous" guestions.
Thus, when choices must be made (as they must) as to which
constructions are most important in the developrmient of the
grammar and understanding capability of the system, priority

is given to constructions wiiich we feel might be used by a
serious user in need of information. We do not, for example,
assign much priority to handling constructions such as "tag
questions" (e.g. "Lunar rocks contain oxygen, don't they?",
"Sample S10046 is a breccia, isn't it?", etc.), and many other
constructions which occur in English but would not appreciably
increase the usefulness of thc system. Likewise, we are not
interested in questions which require evaluation, judgment, or
conclusions on the part of the svstem (e.¢. "bDoes the noon have
a hot core?", "What is tl.e most probable source of the lunar
dust?", etc.). It is the task of the scientist to interpret
the data, and we are trying to aid him in tiiis task--not replace

him,

The questions for which the systen is intended, are straight-
forward factual questions, which arise directly from measurements
and observations of the samples. 7The following list gives a
representative sample of the types of sentences for which the

system is intended:

. List the rocks which contain chronite and ulvospinel-:
Give me all references on fayalitic olivine.

What minerals have lreen identified in the lunar samples?

B oW N
[)

What analyses of olivine are there?

1.8

5. What is the average analysis of Ir in rock S10055?
6. List the modes for all low Rb rocks.
7. Give me the K / Rb ratios for all lunar samples.

8. Has the mineral analcite been identified in any
lunar sample?

9. What is the concentration of La in rock S10034?
10. Identify all samples in which glass was found.
1ll. Give me all modal analyses of lunar fines.

12. In what samples has apatite been identified?

1.2.4 OQuerying the Data Base

In this section we will give a sample of the tvnes of
querying interactions which the system permits. ‘'lore examples

are given in Appendix G.

Perhaps the most typical example of a request which a
geologist might make to the LSMNLIS system is illustrated by
the following protocol:

38*%*x (WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN
HIGH ALKALI ROCKS)
dok ok

PARSING

1331 CONSES

4.987 SECONDS

INTERPRET ING

2427 CONSES

11.825 SECONDS

INTERPRETATIONS:

(FOR THE X13 7 (SEQOL (AVERAGE X14 / (SSUNION X15 / (SEQ TYPEAS) 1
T 3 (DATALINE (WHOQFILE X15) X15 (NPR*x X16 / (QUOTE OVERALL)) (NPRx%
X17 7/ (QUOTE AL203)>)>) ¢ T)) ¢ T 3 (PRINTOUT X13))

BBN LISP=-19 (A3-039-72 +s.
EXECUT ING
(84134995 . PCT)

(Here, the system has typed the two asterisks, the user typed the
question, beginning and ending with parentheses, and the systen
typed the rest. The comments 1331 CONSES and 4.987 SFCONDS

give a record of the memory resources and the time used during

1.9

the parsing phase. A similar record is generated for the interpre-
tation phase. The expression following the comment INTERPRETATIOWS:
is the formal retrieval program which is executed in the data base
to produce the answer.) This request illustrates a numi.er of

features of the system:

1. The user types the guestion exactly as he would say it
in English (terminal punctuation is optional and was omitted in

the example).

2. The system has translated the phrase "high alkali rocks"”
into the internal table form TYPEAS.

3. The system has filled in an assumed OVEI'ALL phase for
the concentration since the request does not mention any specific

phase of the sample in which the concentration is to Le measured,

4. The systenm is capable of computing ansvers fror the data
base as well as sinply retrieving taem (the average was not stored

information) .

Perhaps the simplest operation which the svstem will perform
for the user is to collect and list sclected portions (not
necessarily contiguous)} of the data base. TFor examnle, in
response to a request "Give me all analvses of S100%46," the

svstem would respond as follows:

kR k

37**x(GIVE ME ALL ANALYSES OF S10046)

ke e

PARSING

1456 CONSES

9+ 445 SECONDS

INTERPRET ING

2112 CONSES

8.502 SECONDS

INTERPRETATIONS ¢

(DO (FOR EVERY X9 / (SSUNION X12 / (SEQ MAJORELTS) t T 3 (DATALINE
(WHOF ILE (NPR#* X184 / (QUOTE S18046))) (NPRx X184 / (QUOTE S10046))
(NPR* X11 / (QUOTE OVERALL)) X12)) t T 3 (PRINTOUT X9)))

BBN LISP-IG @3"09'72 LI]
EXECUTING

I HAVE 1

5 HITS

DO YOU WANT TO SEE THEM? YES

3956 S18346 OVERALL S102 44.96752 PCT D79-235
3967 Ti02 8.3405

3968 650559 D73-254
3865 AL203 11.7149 D79-235
3999 FEO 16.9818

3991 15.438 D79-254
3928 MNO +«20659 D78-235
3929 «22725 D79-254
3927 MGO 9.11845 D70-235
3875 CAO 13.71216

3917 K20 20478

3918 +«19515 D73-242
3919 «14455 D7@-254
3933 NA20 «4718 D7A~-235
3934 50146 D7@-254

This example illustrates some additional features of the system.
since no phase was mentioned, the svstem assumed the
If the uscr had

wanted to see all the phases, he could have said exnlicitly

Again,
OVERALL phase (i.e. the rock as a whole).

"for all phases". Similarly, since no specific elements or
isotopes were mentioned, the svstem assumed a standard list
of major elements was intended (Our geologist informant assures
us that this is what a geologist would mean bhv such a aquestion).
Again, if the user really wanted to see all chemical element
The comment I HAVFE 1% HITS

DO YOU WANT TO SFEL THFEM? illustrates another feature of the

analyses, he could sav so explicitly.
svstem. If the result of a reaquest is more than 5 lines of
output, the svstem types this comment and gives the user the
option of listing them offline.

In addition to averaginag and listing, the svstem can also
compute ratios, count, and internret some anaphoric references

and comparatives as indicated in the following examples:

Sk
31*x(HOW MANY BRECCIAS CONTAIN OLIVINE)
xkx

PARSING

GC: 8B

12263, 12774 FREE WORDS

815 CONSES

4.633 SECONDS

INTERPRETING

1514 CONSES

T.29 SECONDS

INTERPRETATIONS

(FOR THE X12 / (SEQL (NUMBER X12 / (SEQ TYPECS) : (CONTAIN X12 (NPRx*
X14 / (QUOTE OLIV)Y) (QUOTE NIL)>)>)) ¢ T 3 (PRINTOUT X12))

BBN LISP-10 ©03-09-72 ...
EXECUTING
5)

Rk Xk

32xx(WHAT ARE THEY)

Aok ok

PARSING

487 CONSES

2755 SECONDS

INTERPRETING

1158 CONSES

4,353 SECONDS

INTERPRETATIONS ¢

(FOR EVERY X12 / (SEQ TYPECS) : (CONTAIN X12 (NPR* X14 / (QUOTE OLIV))
(QUOTE NIL)Y)> 3 (PRINTOUT X12))

BBN LISP=-1@ 23-09-72 «.»
EXECUTING

S10019

S19059

S19065

S12367

S19973

1.12

34x% (DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM)
Kook ke

PARSING

981 CONSES

44614 SECONDS

INTERPRETING

992 CONSES

3566 SECONDS

INTERPRETATIONS S

(TEST (FOR SOME X16 / (SEQ SAMPLES) t T 3 (CONTAIN® X16 (NPR* Xi7
/ (QUOTE AL203)) (GREATERTHAN 13 PCT)»)))

BBN LISP-10 03-09-72 +se
EXECUTING

YES.

NO HITS

T

-—- - - -

Aok ok

ISxx (WHAT ARE THOSE SAMPLES)

ok %

PARSING

637 CONSES

3.34 SECONDS

INTERPRETING

625 CONSES

238 SECONDS

INTERPRETATIONS ¢

(FOR EVERY X16 7/ (SEG SAMPLES) ¢ (AND T (CONTAIN® X16 (NPR* X17 /
(QUOTE AL203)) (GREATERTHAN 13 PCT)>)) 3 (PRINTOUT X16)>)

BBN LISP-10 (33-89-72 «ese
EXECUTING

GC: 8

6414, 12546 FREE WORDS
I HAVE 10 HITS

DO YOU WANT TO SEE THEM? YES
S19005

510063

S189%66

S12067

S10679

510073

5100874

510075

530084

5192385

3M**C(LIST K / RB RATIOS FOR BRECCIAS)

ol &

PARSING

662 CONSES

3.366 SECONDS

INTERPRETING

1642 CONSES

6.537 SECONDS

INTERPRETATIONS

(DO C(FOR GEN X9 / (SSUNION X18 / (SEQ TYPECS) : T 3 (RATIO (QUOTE
K20) (QUOTE RB) X1@ (NPR* X11 / (QUOTE OVERALL))>)) : T 3 (PRINTOUT
X9)))

BBN LISP-183 03=09-72 «oe
EXECUTING

I HAVE 17 HITS

DO YOU WANT TO SEE THEM? YES
(472.2222 S10018 D70-285)
(473.5884 510018 D73-242)
(518.2477 S19019 D78-218)
(345.4411 S10019 D79-256)
(463.39903 S10021 D79-242)
(568.8333 S30946 D78-235)
(462. 4408 S10046 D70-242)
(4A8.2933 S10048 D70-220)
(566.1499 S10056 D70-235)
(480.1913 S19059 D70-253)
(481.85 S10060 D79-235)
(457.9177 S10060 D70-242)
(4875714 S10060 D70-248)
(489.1304 S10061 D763-285)
(458.9973 S10965 D70-236)
(4731551 S10A365 D70-258)
(580.173 S10073 D78-215)

The svstem also understands restrictive relative clauses
and certain adjective modifiers (some of which cause restrictions
on the range of quantification of the noun phrase and some of
which change the interpretation of the head thev modifv). Some
other modifiers (such as "lunar" modifvinag samnles) are known
to be redundant and are deliberately ignored. The following

example contains all three:

4%k (LIST MODAL PLAG ANALYSES FOR LUNAR SAMPLES

THAT CONTAIN OLIV)

sk Xk

PARSING

1899 CONSES

4.346 SECONDS

INTERPRETKNG

2774 CONSES

12.33 SECONDS

INTERPRETATIONS 2

(DO (FOR GEN X23 7/ (SSUNION X1 / (SEQ SAMPLES) : (CONTAIN X1 (NPR=*
X3 7/ (QUOTE OLIV)) (QUOTE NIL)>) 3 (DATALINE (WHQFILE X1) X1 OVERALL
(NPR* X4 / (QUOTE PLAG)Y)>)) : T 3 (PRINTOUT X20)))

BBN LISP=10 @3-09-72 «es
EXECUTING

GC: 302

S12, 1022 FREE WORDS

I HAVE 13 HITS

DO YOU WANT TO SEE THEM? YES

1679 S18020 OVERALL PLAG 30.7 * ok D78-159 15

1680 21.4 D70-173 31
1681 28.5 40
1682 24.6 D76-305 a

2141 st9922 15.6 D76-179

3189 S10044 33.1 D76~-154 a1
3110 34.1 42
4440 510047 37.8 D78~159 0

5796 510058 37.1 D70-155

8582 S18972 20.4 D76-173

8583 1845 D76-179

9311 S10084 22.0 D72-186

9312 15.0 D76-304

The structure of the formal acuery lanquage for accessing
the data base and the techniaques for semantic interpretation
enable the user to make very explicit reguests with a wide
range of diversity within a natural framework. As a natural
consequence of the arrangement, it is possihle for the user
to combine the basic predicates and functions of the retrieval
component in ways that were not specifically anticipated, to
ask questions about the system itself. For example, one can
make requests such as "List the phases.", "What are the major

elements?", "How many minerals are there?”, etc. Although

1.15

these questions are not likelv to be sufficientlv useful to
merit special effort to handle them, thev fall out of the
mechanism for semantic interpretation in a natural wav with

no additional effort required. If the svstem ¥nows how to
enumerate the possible phases for one purpose, it can do so

for other purposes as well, Furthermore, anvthing that the
system can enumerate, it can count. Thus, the fragmentation

of the retrieval operations into basic units of quantifications,
predicates, and functions provides a verv flexible and powerful

facilitv for expressing requests.

In addition to the above operations, the system provides
facilities for requesting keyphrase document retrieval and for
updating and adding to the data base - both in natural English.

1.2.5 User Aids

In any natural language understanding system (even in people)
it will occasionally (or frequently) happen that the user will
be misunderstood. This is especially true for current computer
systems due to their limited linguistic capabilities. It is
therefore important that the system be able to give the user
some useful feedback when it fails to understand him so that
the user can adjust his requests to meet the limitations of
the system. LSNLIS has extremely limited capabilities in these
directions but we have implemented a small collection of user
aids to help the user when his request fails to be understood.

A sentence may fail to be understood by LSNLIS for any of
several reasons. First, it may fail to parse at all in the
syntactic component. This may be due to its being genuinely
ungrammatical, its use of a word in a sense not included in
the dictionary, its use of a totally unknown word, or due to
bugs in the system grammar or dictionary. The system notifies
the user when it encounters an unknown word and won't proceed

until the user either specifies a synonym (or a dictionary

entry for the new word if he knows how, which is unlikely) or
quits. Bugs in the grammar and dictionary would gradually

be detected and corrected in a working system and are thus not
a conceptual problem. However, we have no effective solution
in the current system for sentences that fail to parse when

all the words are known. This is detected by the system when
it has tried all of the alternative choices at its disposal and
has failed to find a parse. At this point it has no idea which
of its analysis paths was "closest" to being right. The best
it can do is tell you how far into the sentence it got in a

left-to-right parse, but this is not really very satisfactory.

If a sentence parses successfully, it may still fail to be
understood due to a failure in the semantic interpretation
component. When a request fails to interpret, it may be for
one of two reasons: There may be no semantic rules available
in the system for interpreting some node of the svntactic
structure, or none of the semantic rules given for interpreting
some word in context actually match. This latter situation
may be the result of incorrect parsing, for example, incorrect
modifier placement. The user, who may see the syntactic structure
by setting PPRINT to T, has the recourse of seeking an alterna-
tive parsing by saying to TALKER, GO(PARSE),

When RULES fails to find any semantic rules to use in
interpreting a sentence node, it calls the function
SYNONYMS?, SYNONYMS? asks the user whether the head of the
current node is a synonym of one of its known words, of which
it was previously unaware. If the user can specify a synonym,
the head is marked appropriately, and RULES returns the semantic
rules to use in matching the node. The user is given the al-
ternative of quitting the interpretation if he is unable to
provide any usable synonyms. The nouns that the system under-
stands (i.e. the nouns with which a set of NRULES is associated)
are recorded on the list SEM-NOUNS, while the verbs which it

1.17

can understand as the head of an S node are kept on the list
SEM-VERBS. These lists should be updated when new words become
interpretable in the system via new NRULES and SRULES.

For example, one of the concepts the semantic interpreter

understands is that of an analysis. Consider a request for

**% (W DETERMINATIONS IN TYPE B ROCKS)

The request will fail because RULES can find no NRULES to use

in matching the node headed by "determinations". "Determina-
tion" neither has NRULES of its own, nor is it marked as being
synonymous with any other word in the system. With USERFLAG on,
the function SYNONYMS? will solicit the user for usable synonyms
and should find out that "determination" 1is synonymous with
"analysis". From here, the interpretation will proceed without
further problem. (It is not necessary that the two words be
synonymous in all contexts, just so that when they are in the
same context, they are indeed synonymous.)

Even if RULES is able to provide a list of semantic rules to
use in interpreting a node, there is the possibility that none
of them will match. The templates in the rules specify one or
several possible structural descriptions for the node and also
semantic or lexical requirements that its components nust meet
for the rule to apply. A rule may fail to match because some
structural component is missing, or because the semantic or
lexical requirements on some subnode fail. When MATCHER fails
to match any of the rules given it by RULES, it calls the
function NO-MATCHES. NO-MATCHES informs the user that the
system cannot understand his use of the word which heads the
node, within the context given by the node. The user is given
the option of quitting (at which point he may call for his re-
quest to be reparsed) or breaking and investigating the problem
for himself, (The latter would only be useful for a programmer

familiar with the operation of the semantic interpreter.)

It may also happen that the semantic interpreter does not
understand a user's request completely. This happens because
a semantic rule can match a node without using all of its con-
stituents. In this case, the semantic interpreter can produce
an interpretation, but it will be missing some of the information
specified in the request. Sometimes, this information is
stylistic: For example, the relative clause in the request "Are
there any analyses of Whitlockite in the samples that you have?"
Since the system takes "analyses of Whitlockite in the samples"
to refer only to the ones it knows about, the relative clause
"that you have" does not state anv new information. If the
system were to tell the user that it could not understand "that
you have" as a modifier of the rest of the noun phrase, which it
does understand, the user should be able to tell the system to

ignore it.

However, sometimes the constitutents the Semantic Interpreter
has ignored are really necessary for the node's complete inter-
pretation. When this happens, the user should be informed of
the constituents being ignored and given the opportunity to
scrap the request and try again., For example, the system does
not have any referent for "microcrystalline inclusion" beyond that
of papers which have been written on the subject. In a request for
"Analyses of microcrystaline inclusions in olivines". the
Semantic Interpreter would otherwise ignore this unrecognizable
phrase and go on to interpret "Analysis in olivine", which would
certainly be incorrect. In the current system, the user is in-
formed whenever the Semantic Interpreter is about to ignore any
of three types of noun phrase modifier - adjective, prepositional
phrase, or relative clause, and he is asked whether it is safe
to ignore it. If he says no, then the request is aborted.

1,2.6 Sample Sentences Handled

The following is a list of types of sentences handled
as of March 1972:

(Samples with silicon)

(Which rocks do not contain chromite and ulvospinel)

(Give me all lunar samples with magnetite)

(In which samples has apatite been identified)

(Which elements has someone found in breccias and in basalts)

(What is the specific activity of Al26 in soil)

(Analyses of strontium in plagioclase)

(What are the plag analyses for breccias)

(Rare earth analyses for S10005)

(I need all chemical analyses of lunar soil)
(Chemical compositions of glassy materials)

(What is the composition of ilmenite in rock 10017)
(Has anyone analysed rock 10046 for major elements)
(What are the analyses of aluminum in vugs)

(Nickel content of opaques)

(Which samples are breccias)
(What are the igneous rocks)

(Are any of the samples volcanics)
(What type of rock is S10003)
(What types of sample are there)

(What is the average concentration of olivine in breccias)

(What is the average analysis of olivine in breccias)

(What is the average olivine concentration)

(What is the average age of the basalts)

(What is the average potassium / rubidium ratio in basalts)

(In which breccias is the average concentration of titanium
greater than 6 percent)

(What is the average concentration of titanium in each breccia)

(What is the average concentration of tin in breccias)

(What is the mean analysis of iridium in type b rocks)

(I want the average composition for glasses in dust)

(What is the average plagioclase content in crystalline rocks)

(Modal plag analyses for S10058)

(Modal olivine analyses)

(Give me the modal olivine analyses for S10022)
(Give me all modal analyses of plag in lunar fines)

1.20

10.

11.

(Which samples have greater than 20% modal plagioclase)
(Which samples are more than 20 percent plagqg)

(How many rocks have greater than 50 ppm nickel)

(Which samples contain more than 15 ppm barium in plag)

(How much titanium does S10017 contain)
(How much nickel is in rock 10046)

(What is the number of phases in each sample)

(How many samples contain titanium)

(How many papers have been published on lunar material)
(How many different moon rocks do we have)

(Bulk chemistry of soil samples)
(Give me all references on fayalitic oclivine)

(Of the type A rocks which is the oldest)
(Which rock is the oldest)

(Which is the oldest rock)

(The highest titanium concentration)

1.21

p—

Chapter 2

THE ANALYSIS SYSTEM

2.1 Overview

In order to "understand" and respond correctly to
an English query, it is necessary not only to determine the
syntactic structure of the input sentence but also to determine
the "meaning" of the sentence to the system. This is determined
by both the syntactic structure of the sentence and semantic
information about the particular words which occur in it as
they are related to the data base. In the MSC application,
the meaning of a request is a procedure for computing its answer.
The I.SNLIS system represents this meaning in a powerful formal
request language (Woods, 1968) which is then executed in the
retrieval component to produce the answer to the request. The

system processes English queries in three successive phases:

(i) svntactic analysis using heuristic information

to select the most "likelv" parsingas,

(ii) semantic interpretation to produce a formal
representation of the "meanina" of the auerv to

the svyvsten,

(1ii) execution of this formal expnression in
the retrieval component to produce the answer to

the request.
The Fnalish Lanquage preprocessor nakes use of a

general parsing algorithm for transition netwvork agrammars and

a general rule-driven semantic interpretation procedure which

2.1

were developed at Harvard University and BPN over a period

of years from 1967 to 1970, and which have been remorted on
in the literature (Woods, 1967, 1968, 1969, 1970). Tor this
contract, we have adapted these programs to the MSC an-
plication, developed a grammar for a large subset of Enalish,
developed a set of semantic interpretation rules for inter-
pretina reaquests for references, chemical analvses, ratios, etc.
and constructed a larae dictionarv of approximatelv 3500
words. In addition, we have provided functions for setting
up and interrocating a data base of chemical analvsis data,
computing averaaces and ratios, and retrieving references

from inverted files in response to Boolean combinations of
kev words, The overall organization of the Inalish Lanauaae
Preprocessor is shown in Fiqure 2-1., TIn this chapter we will
be given a bhasic description of the operation of the major
components of the svstem; a complete and detailed descrintion
of the individual functions which make up the svstem is

given in 2Apnendix D.

PARSER ‘ SEMANTIC RETRIEVAL
INTERPRETER COMPONENT
DATA
GRAMMAR DICTIONARY BASE
\
USER'S
QUERY ANSWER
Figure 2-1. Organization of the

LSNLIS system

2.2 The Parsing System

The MSC English preprocessor makes use of a general
parsing procedure for transition network grammars developed at
Harvard University and extended at Bolt, Beranek, and Newman
(Woods, 1969,'70,'72). This section gives a basic description of
the transition network grammar model and the operation of the
parsing system. (For more detail see Appendix D.) For more
detail on the philosophy and motivation of the transition network

grammar model, see the above cited references.

The transition network grammar model is an extension of
the notion of state transition diagram well-known to automata
theory. A transition network grammar consists of a network of
nodes with arcs connecting them. The nodes represent states of a
hypothetical parsing machine and the arcs connecting them represent
possible transitions and are labelled with the types of events in
the environment of the machine which permit the transitions. 1In
the case of a transition network grammar, the types of events are
the occurrences of words and phrases in the input string upon which
the grammar is operating.

The type of transition network grammar which we are using
for the MSC grammar is an augmented recursive transition network
grammar in which the arcs of the network include arbitrary conditions
for determining when their transitions are permitted, and arbitrary
structure-building actions which build up the syntactic representa-
tion of the sentences recognized. This model has only recently

been applied in the field of natural language processing, and it
‘ provides a practically feasible means of obtaining the types of
analyses formerly obtainable only from laborious inversions of

transformations specified by a transformational grammar of the

Chomsky variety (Chomsky, 1965). The transition network model
permits analyses effectively equivalent to those of the transfor-
mational grammar, and it is the first parsing procedure to enable
such sophisticated linguistic principles to be embodied in a

practically feasible manner.

We say a state accepts a given string if that string
permits a sequence of transitions which lead from that state to
some state which is distinguished as a "final" state (in our
system, this is indicated by the presence of a POP arc which not
only marks the state as being a final state, but orders the alter-
native of accepting the string at that point with respect to the

other arcs which leave that state).

A recursive transition network grammar contains two types
of arcs--lexical arcs which correspond to transitions permitted by
single words, and recursion arcs (or PUSH arcs) which invok re-
cursive appiications of the network to recognize a phrase or word
gouping of some kind. The most common type of the former is the
CAT arc which recognizes members of a specified syntactic category.
For example a CAT N arc permits a transition if the current word
in the input string is a word in the syntactic category N (for
noun). A PUSH NP/ arc permits a transition if the state NP/ can
recognize a noun phrase at the current spot in the input string.

In addition, there are JUMP arcs which perform actions without
advancing the input string (normally the input string is advanced
past the word or words which permit a transition) and a variety of

other special arc types. These are covered more fully in the
appendices.

Figure 2-2 gives a simple example of a transition net-
work grammar. It recoagnizes simple declarative and interrogative
sentences with noun phrases containing adjective modifiers and
pPrepositional phrases. Lexical arcs are indicated with lower case
labels, and PUSH arcs are indicated with upper case labels that
name the state to which control is to "push”. It is easy to visu-
alize the range of acceptable sentences from inspection of the
transition network. To recognize the sentence, "Did the red barn
collapse," the network is started in state S. The first transition
is the aux transition to state 9, permitted by the auxiliary "did".
From state q, we see that we can get to state q, if the next "thing"
in the input string is a NP. To ascertain if this is the case, we
call the state NP. From state NP we can follow the arc labeled
DET to state dg because of the determiner "the". From here, the
adjective "red" causes a loop which returns to state q., and the
subsequent noun "barn" causes a transition to state d94. Since state
9, is a final state, it is possible to "pop up" from the NP computa-
tion and continue the computation of the top level S beginning in
state d5 which is at the end of the NP arc. From d; the verb
"collapse" permits a transition to the state q,, and since this
state is final and "collapse" is the last word the string is accept-
ed as a sentence.

st

S 1is the start state

9y 950 99 Ug» and 90 are the final states

Figure 2-2. A Sample Transition Network

2.7

2.2.1 Structure building on the arcs

A parsing system must do more than just say whether or
not a given string is a sentence; it must also build up a repre-
sentation of the syntactic structure of the sentence. Such a
representation must exhibit the syntactic relationships among the
words and phrases of the sentence. 1In the augmented transition
network model, this is accomplished by the use of structure-
building actions on the arcs of the grammar, and by the association
of a form with each final state of the grammar which specifies how
to build the structural representation to be returned by that state.
This form is given by the label on the POP arc associated with that

state.

The structure-building actions as well as the arbitrary
conditions on the arcs operate on the contents of a set of registers
which are maintained at each level of recursive application of the
network and are set and reset by the actions on the arcs. A special
"current constituent pointer" * is also available for reference in
the conditions and actions. The structure-building form associated
with the POP arcs uses the contents of these registers to assemble
its structural representation. Each register may contain an arbi-
trary piece of tree structure, and may also be used to hold flags
for testing by the conditions on the arcs.

The basic structure building actions is that which
attaches the contents of specified existing registers at specially

marked points in a prototype tree fragment and puts the result into

a register. For example, the sentence structure:

/S\
Nr VP
NPR V//////A\\\\NP
| | |
Chomsky wrote NPR

Syntactic Structures

can be built by attaching the contents of registers NPREG, VPREG
and OBREG:

NPREG: NP VPREG: \Y OBREG: NP
NPR wrote NPR
Chomsky Syntactic Structures

as leaves of the fragment:

+ +

where the + signs indicate leaves that are to be replaced by

register contents.

The use of registers to hold pieces of sentence structure
allows considerable flexibility in the way that structures are built
up. The final structure of a construction does not need to be fixed
until the parser is ready to pop up with the total structure of the
construction. That is, the decision as to the final structure can
be postponed until all of the pieces of the structure have been found

in whatever order they occur., The relative order among the

pieces of structure contained in different registers is not decided
until the pieces are put together at the end, and this order need
not have anything to‘do with the order in which the pieces were
found. Moreover, even when one has made a tentative decision as

to the funciton of a particular part of the structure and assigned
it to a register accordingly, it is always possible to change one's
mind in the light of subsequent input and move that piece of struc-
ture to a different register. Nothing about the structure is
frozen until the moment that it is popped up to the higher level
computation which wanted it.

2.2,2 Parsing with a transition network grammar

A transition network grammar is essentially a non-deter-
ministic machine. That is, the transitions which are permissable
from a given state are not uniquely determined by the input string.
It is this characteristic of the model which mirrors the notion of
ambiguity in English sentences. A sentence is ambiguous if there
is more than one possible accepting path for that sentence. Thare
are a number of complexities forced on a natural language parser
by the fundamental ambiguity of English, and one of them is the need
to provide an algorithm which is capable of pursuing various possible
alternatives in the course of parsing. 7“he enumeration of tiiese
alternatives is the major source of effort in most natural language
parsing systems. While it is not possible to avoid completely
this fundamental fact of life for natural language processing, the
techniques of the transition network grammar go a long way toward
minimizing the problem. The factoring and merging of paths in the
network and the postponing of decisions until therc is information
to make them tend to reduce the total number of alternatives which
in principle must be considerecd. Furthermore, the ordering of the

arcs leaving the states permits a selection of the "more likely"

alternatives first so that in many cases, the most likely parsing

is found while many of the other alternatives have not vet been
pursued, This permits a parsing system in which the parser uses

the ordering of the arcs and the complex conditions on the arcs

to try to determine the most likely parsing first and thereby avoid
a large part of the enumeration required by other parsing algorithms.
The basic necessity for dealing with a non-deterministic or enumer-

ative algorithm, however, remains.

2.2.,3 Configurations

In simulating the operation of a nondeterministic machine
by a deterministic machine such as a real computer, it is necessary

to keep track of alternative confiqurations of the nondeterministic

machine. 1In the case of a transition network grammar a configuration
is determined by the current state, the current register contents,
and a stack of the states and register contents at all higher levels
in the analysis (since in general, the current state may be several
levels down in recursive calls to the network). FEach recursive

call to the network adds another entry to the stack to contain the
state and registers associated with that level and then clears the
registers for the new level and sets the state to the state which
was named on the PUSH arc. 1In additibn, the stack entries remember
the actions which remain to be performed on the PUSH arc after a
successful return from the PUSH.

In the parsing system which we have implemented, the
configuration is represented by a list consisting of the state, the
stack, a list of register contents, the contents of a special HOLD
list, and a PATH entry which records the history of how the current
state was reached from the initial state at the current level. The

stack is represented by a list whose elements (STACKELT's) record

2.11

the state, the register contents, the actions on the PUSH arc, and
the partial path entry for the computations at higher levels.
Register contents are kept on a list of alternating register names

and register values.

2.2.4 Organization of the parser

Parsing of a sentence begins by calling the function
PARSER with a string to be parsed. PARSER constructs an initial
configuration consisting of the start state (with empty registers
and stack) and then calls a function STEP to simulate the transitions
in the network. It calls a function LEXIC to perform the lexical
analysis of the input string--determining the next word, accessing
its dictionary entry, expanding contractions, compressing compound
expressions, making substitutions, etc. Thus PARSER provides the
basic overall control, while LEXIC interfaces the input string and
STEP performs the basic simulation of the transition network. Flow

charts of these basic functions are given in figures 2-3, 2-4, and
2-50

2.2.5 Simulat}p&wof Nondeterminism

Although the parsing system we are using provides for
following alternative paths either in series or in parallel or in
combinations of the two, the MSC system as we have implemented it
makes use only of the sequential mechanism. In this mode, the arcs
leaving a state are considered in the order in which they occur, and
the first arc which can be followed i; chosen. At this point, any
arcs remaining in the list, together with tlie current configuration
and the place in the input string, are combined into a list called
an ALTARC alternative and saved on an ALTS list of the parser to be

persuced later if the current choice turns out not to be successful.

PARSER:

ALTS ?

NO

YES

SETUP INITIAL
CONFIGURATION
(STATE S/}

END OF
STRING

YES

GET NEXT CALL LEXIC
ELEMENT TO GET
FROM TRAIL NEXT WORD

NO

APPLY STEP
TO EACH ACF

CALL DETOUR
TO SELECT
ALTERNATIVE

SELECT
ARC TYPE

ALTARC
ALTCAT

CALL STEP
TO RESUME
ALTERNATIVE

END OF

ANY
PARSINGS
?

wm?

NO

APPLY STEP
TO ALL ACTIVE 22222
CONFIGURATIONS COMMENT
{ACFS)
RETURN NIiL
RETURN
NEW NO PARSINGS
Aciiz//// AND ALTS
YES
ADVANCE

STRING OR TRAIL
DEPENDING ON
LEXMODE

ALTCONJ
ALTLEX

SETUP CONFIG
TO BE
RESUMED

Figure 2-3.

The Function PARSER

LEXIC:

. |'sETUP NEW LEX
YES 1 AND ANY NEW —»25;?"
ALTERNATIVES
NO
)
LEX <— FIRST
ELEMENT OF
STRING
GENERATE RETURN
ALTCOMP —> ALTS
ALTERNATIVE

IS IT AN
INTEGER
OR NIL?

IT HAVE A YES

RETURN
NIL

DICTIONARY
ENTRY,

UNPACK WORD
AND LOOK FOR
PUNCTUATION

PUNCTUATION

CALL REQUESTDEF
TO GET DICTIONARY
ENTRY FROM USER

EXTRACTED?

PRINT ERROR
COMMENT

—

RETURN
NiL

ANY
SUBSTITUTES
ORLEX?

COMPOUNDS
FORpLEX

YES

YES

MAKE SUBSTITUTION
IN STRING
—GENERATE
ALTS FOR
ALTERNATIVES

TRY TO MATCH
COMPOUNDS

MATCH & GENERATE

— CHOOSE LONGEST

ALTS FOR ANY OTHERS

RETURN
ALTS

Figure 2-4. The Function LEXIC

2.14

RETURN
ALTS

STEP.

ALTCAT

YES

ALT?

RESTORE
SAVED CONFIG,
ARCS, AND LEX

NO

SETUP ACONFIG
AND SPREAD
COMPONENTS

MAXTIME
EXCEEDED
?

LEXARCS

YES

TYPE
ERROR
COMMENT

FOR LEX

GET ARCS FOR
CURRENT STATE

COMPUTE ARCS
FROM LEXARCS
ENTRY

RETURN
NIL

Figure 2-5,

1S ARC

COMPUTE
SYSCONJ ARC
IF NEEDED
ANY MORE S NO A THISA NO _ RETURN
ARCS? NIL
RESTORE ONFIG?
SAVED CONFIG,
ARC, ROOT, YES YES
AND FEATURES
PICK UP ADD CONFIG TO
NEXT ARC LIST OF BLOCKS
SET LEX CETURN
A URES
ND FEAT RETY
DECODE ARC—
TYPE AND CHECK zgaugi§R°R
CONDITIONS
RETURN NIL

PERMITTED
?

YES

STORE
ALTERNATIVES FOR
ANY UNTRIED ARCS

!

PERFORM ACTIONS
FOR ARC
ACCORDING TO
THE ARC TYPE

!

RETURN VCFS
(NEW ACFS}

2.15

The Function STEP

We feel that this means of dealing with nondeterminism preserves
the potential for backtracking and trying other alternatives which
is essential for dealing with natural language ambiguity while
retaining most of the advantages of a deterministic algorithm. It
depends for its success, however, on the ability for selecting the
right parsing first or soon thereafter, (since otherwise all alter-
natives have to be enumerated and the advantages are lost). The
present grammar does a very good job of selecting a reasonable
parsing (if not the best one) in most cases, but there remains one
major area in which syntactic information alone (without semantic
information) has so far proven insufficient for making good choices

for the "most likely" parsing. This area is that of choosing the
scope for conjunctions,.

2.2.6 Morphological analysis

One of the features of the current English processor
is a facility for morphological analysis of regularly inflected nouns
and verbs. This facility permits a single dictionary entry for
the root form of the word with a code which indicates the type of
regular inflection which the word undergoes. The system will then
automatically recognize all of the regularly inflected forms of
that root. This facility is performed by a function MORPH called by
LEXIC. 1In addition to inflectional analysis, MORPH is able to
recognize some items which appear to be contract numbers, hyphenated
adjective modifiers, integers, and times of day without their having
to be entered in the dictionary. Other types of morphological anal-
Ysis are possible for "guessing" the parts of speech for words that

are unknown to the system, but this type of analysis has not been
incorporated into the current system.

2.16

2,3 The Semantic Interpreter

The semantic interpretation component of the LSpiI¢
systew is an adaptation of the semantic interpretation proce-
dure presented in Woods (1967, 1968). It operates on a syntactic
structure or fragment of syntactic structure which has been constructed
by the parser and it assigns semantic interpretations to the nodes
of this structure to indicate the "meanings" of those constructions
to the system. The procedure is such that the interpretation of
nodes can be initiated in any order, but if the interpretation of
a node requires the interpretation of a constituent node, then the
interpretation of that constituent node is performed before the
interpretation of the higher node is completed. Thus, it is possible
to perform the entire semantic interpretation by calling for the
interpretation of the top node (the sentence as a whole), and this
is the normal mode in which the interpreter is operated in the LSNLIS

system,

2.3.1 Semantic Rules

In determining the meaning of a construction, two types of

information are used--syntactic information about sentence construc-

tion and semantic information about constituents. For example, in
- : ’

interpreting the meaning of the sentence,

"Chomsky wrote Syntactic
Structures," it is both the

syntactic structure of the sentcence

subj = sky; = i j
{ ject Chomsky; verb = "write"; object = Svntactic Structures)

Plus the semantic facts that Chomsky is a per

son and Syntactic

Structures is a book that determine the interpretation (AUTHOR:
SYNTACTIC STRUCTURES CHOMSKY). In the Woods interpretation pro-

cedure, this information is embodied in semantic rules consisting

of patterns that determine whether a rule can apply, and actions

that specifv how the semantic interpretation is to be constructed.

Syntactic information about a construction heing inter-

preted is tested by tree fragments such as those indicated below:

S :NP-V S:V=-0BJ S:PP

S S S

N | |
NP VP VP vp
l | T 9=

(1) v \Y4 NP P

| | I N
(2) (1) (2) PPI|?P Nr
SUBJECT-VERB VERB-OBJECT (1) (2)

PREPOSITION-OBJFCT
MODIFYING A VP

Fraament S:NP-V matches a sentence if it has a subject and a verb
and also associates the numbers 1 and 2 with the subject noun phrase
and the verb respectively. The numbered nodes can he referred to
for checking semantic conditions and for specifving the interpre-
tation of the construction. Fragments in the system are named

mnemonically for readability.

The basic element of the pattern part of a semantic rule
is a template consisting of a tree fragment plus additional seman-
tic conditions on the numbered nodes of the fragment. For example,
the template (S:NP-V (AND (MFM 1 PERSON) (EQU 2 WRITF))) matches a
sentence if its subject is semanticallv marked as a person and its

verb is "write". The pattern part of a rule consists of a limited

Boolean combination of such templates and the action of the rule
specifies how the interpretation of the sentence is to be constructed

from the interpretatiéns of the numbered nodes of the templates.

The left-hand side of a semantic rule consists of a list
of components, each of which may be either a single template, a
negated template (embedded in a NOT), or a disjunction (OR) of
templates. A component consisting of a simple template matches a
node of the syntax tree it its template does, and a NOT component

matches a node if its embedded template fails. An OR component

matches if any of its constituent templates match (including a
possible DEFAULT template at the end which matches if nothing else
doesf. A semantic rule matches a node if all of its components
match. In addition, in the process of matching a rule, a record
is maintained of the nodes of the syntax tree which match the num-

bered fragments in each of the components.

2.3.2 Right-hand Sides

The right hand sides (or actions) of semantic rules are
forms (or schemata) into which the interpretations of embedded
constituents are inserted before the form is evaluated to give the
semantic interpretation (or a part of it) which is to be attached
to a node. The expressions in the right-hand sides which indicate
the places where interpretations of cmbedded constituents are to
be inserted are indicated by lists (called a REF's) which begin
with the atom # and contain one or twg numbers and an optional
"TYPEFLAG". The numbers indicate the node in the tree whose inter-
pretation is to be inserted by naming first the number of a compo-
nent of the rule and then the number of a node in a trce fragment
of that component. Thus the reference (42 1) rcpresents the inter-

pretation of the node that matches node 1 of 2nd component of the

rule. In addition, the single number @ can also be used to

reference the current node.

The TYPEFLAG element, if present, indicates how the node

is to be interpreted. (For example, in the MSC system there is a
distinction between interpreting a node as a topic description and
interpreting it for what it says.) Thus (# £ TOPIC) represents
the interpretation of the current node as a topic description.
There are a variety of types of interpretation used for various
purposes in the semantic interpretation rules of the system. The
absence of a specific TYPEFLAG in a REF indicates that the inter-
pretation is to be done in the normal mode for the type of node
which it matches. In this case, there is an alternative form

of the REF consisting of a dotted pair of the two numbers. Thus

(2 . 1) is equivalent to (# 2 1).

As an example, consider the semantic rule:

(S:WRITE
(S:NP (MEM 1 PERSON))
(S:V-0OBJ (AND (MEM 2 DOCUMENT) (EQU 1 WRITE)))
--> (PRED (AUTHOR: (# 2 2) (¥ 1 1))))

This rule says that if the sentence has a subject which
is a person, a verb "write", and an object which is a document,
then the meaning of the sentence is compbuted by substituting the
interpretations of the node numbered 1 in the first component
(# 1 1) and the node numbered 2 in the second component (# 2 2)
into the indicated places in the schema (AUTHOR (# 2 2) (# 1 1))
and treating it as a predicate (PRED). (S:WRITE is the name
of the rule.)

2.3.3 Oxrxganization of Rules

The semantic rules for interpreting sentences are
usually governed by the verb of the sentence. That is to say
that out of the entire set of semantic rules, only a relatively
small number of them can possibly apply to a given sentence
because of the verb mentioned in the rule. For this reason, the
semantic rules can be indexed according to the verb (or verbs)
of sentences to which they could apply and recorded in the diction-
ary entry for the verb. Each rule then characterizes a syntactic/
semantic environment in which the verb can occur and specifies its
interpretation in that environment. The templates of the rule
thué describe the necessary and sufficient constituents and
semantic restrictions in order for the verb to be meaningful.
There are also situations, however, in which the type of construc-
tion and the mode in,which it is being interprcted determine a set

of rules which does not depend on the head of the construction.

2.3.4 Multiple Matches

Since the templates of a rule may match a node in
several ways, and since several rules may simultancecously match a
single node, it is necessary to indicate how the interpretation
of a node is to be constructed in such a case. To provide this
information, the lists of rules which the interpreter uses--
whether taken from global lists or from the property lists of
heads of constructions--are not necessarily simple lists of rules,
but may be organized into rule groups with each group indicating
how (or whether) simultaneous matches by different rules are to
be combined. In addition, at the top level of such lists, the atom
NIL may be used as a "barrier" to indicate that by the time the
matching process has reached that point in the list it will proceed

further only if there have becen no successful matches so far.

The mode for combining simultaneous matches at the top level of
this list is a default mode determined by TYPEFLAG and the type
of node. Possible modes are SPLIT (which keeps multiple matches
separate as semantic ambiguities), FAIL (which prohibits multiple
matches), AND (which combines multiple matches with an AND), and
OR (which combines multiple matches with an OR). For example,

a rule list of the form (A B NIL C (OR D E)) with default mode
AND indicates that if either of the rules A or B is successful,
then no further matches are tried (NIL is a barrier); otherwise,
rules C, D, and E are tried, and if both D and E match then the
results are OR'ed together, and if C matches together with D or
E or both, it is AND'ed to the results of the OR group.

The modes (SPLIT, FAIL, AND, and OR) also apply to
multiple matches of a single rule, A rule may either specify the
mode for multiple matches as its first element prior to the list
of components, or else it will be governed by the rule group mode --
setting at the time it is matched.

2.3.5 Organization of the Semantic Interpreter

The overall operation of the semantic interpreter is
as follows: A top level routine calls the recursive function
INTERP with TYPEFLAG NIL looking at the top level of the parse
tree. Thereafter, INTERP attempts to match semantic rules against
the specified node of the tree, and the right-hand sides of matching
rules specify the interpretation to be given to the nodes. The
possibility of semantic ambiguity is recognized, and therefore the
routine INTERP produces a list of possible interpretations (usually
a singleton, however). Each interpretation consists of two parts--
a node interpretation (called the SEM of the node) and a quantifier
"collar" (called the QUANT of the node) which is to be returned to

2,22

the routine which called for the semantic interpretation of the
current node. Thus the result of a call to INTERP for a given
node P is a list of -SEM-QUANT (or S-Q) pairs--one for each possible

interpretation of the node.

INTERP then calls a function HEAD to determine the
head of the construction which it is interpreting and a function
RULES to determine the list of semantic rules (depcnding on the
type of node and the value of TYPEFLAG) which it is to use to
interpret the construction. It then dispatches centrol to a
routine MATCHER, If no interpretations are found, then, depending
on the TYPEFLAG and various mode settings, INTERP either returns a
default interpretation T, goes into a break with a comment that
the node is uninterpretable (permitting a systems programmar to
debug rules), or returns NIL indicating that the node has no in-

terpretations for the indicated TYPEFLAG.

The function MATCHER calls a function MATCHGROUP to match
groups of semantic rules, and MATCHGROUP, in turn, calls the
function RMATCH to match single rules. RMATCH calls the function
TEMPMATCH to match templates in the left-hand side of the rule
and SEMSUB to insert the interpretations of constituents into the
right-hand side of the rule and compute the resulting interpretation.
The relationships among these functions is indicated by the diagram

in Figure 2-6, and flowcharts for the routines INTLRP and RMATCH
are given in figures 2-7 and 2-8.

INTERP HEAD
RULES
MATCHER MATCHGROUP RIATCH TLMPMATCH
SEMSUB

Figure 2-6. Subroutine control map for the routine
INTERP

2,23

INTERP:

RETURN
VALUE
RULELIST *—
RULES (P,
TYPEFLAG)
MATCHER
-

ADD MATCHGROUP
OF NEXT GROUP OF
RULES TO SEMLIST

ANY MORE
GROUPS
?

BARRIER?

SEMLIST
EMPTY?

NO

SEMLIS;‘; RETURN
EMPTY ¢ VALUE
NO
BREAK
FOR USER
INTERACTION

TAG SEMLIST
ONTO TAGLIST

'

RETURN
VALUE

Figure 2-7. The Function INTERP

2.24

——

RMATCH:

T

RESET MODE

IF RULE SO
SPECIFIES

TEMPMATCH
SUCCEED?

RETURN

ANY MORE NO
TEMPLATES
?
YES
GET NEXT
TEMPLATE

NEGATED
TEMPLATE ?

NIL OR'ED
TEMPLATE
?
4
MLIST -— MLIST «—
{ ORMATCH-~) { TMATCH--)
i |
RETURN
NIL
NO
ADD MLIST
TO KLIST

I

Figure 2-8,

2,25

SEMLIST -—
MAPCONC OF
SEMSUB OVER
KLIST

RETURN
VALUE

RETURN
VALUE

PRINT
ERROR
COMMENT

COMBINE
MATCHES
WITH MODE

!

RETURN
VALUE

BREAK

The Function RMATCH

RETURN

2.3.6 An ExamEle

As an example of the operation of the semantic interpreter
consider the sentence:

(HOW MANY SAMPLES ARE THERE?)
which has the following syntactic structure assigned to it

by the grammar:

S Q
NP DET HOWMANY
N SAMPLE
NU PL
AUX TNS PRESENT
VP V EXIST .

Semantic interpretation begins with a call to INTERP looking at
the topmost S node with typeflag NIL. The head of the construction
is the verb EXIST, and the function RULES looking at an S node
with typeflag NIL returns the global list of rules PRERULES.
These rules look for such things as yes/no question markers,
sentential negations, etc. 1In this case, a rule PR6 matches
and the right-hand side (PRED (# 0 SRULES)) specifies a call
to INTERP for the same node with typeflag SRULES.

RULES looking at an S node with typeflag SRULES returns
a list of semantic rules which it gets from the dictionary
entry for the head of the sentence (in this case EXIST), and
in this case a rule SS41 matches. Its right-hand side
(PRED (EXIST (1 ., 1))) specifies a pattern into which the
interpretation of the node (1 . 1) is to be inserted (where
the matching node in question is the subject noun phrase).

The semantic interpreter now begins to look at the
subject noun phrase with typeflag NIL. 1In this case, RULES
is smart enough to detect the HOWMANY determiner and return
the single rule D:HOWMANY, which matches successfully. The
right-hand side of D:HOWMANY is:

(QUANT (FOR THE X / (# O NUMBER) : T ; (PRINTOUT X)))

2.26

which specifies that a quantifier is to be constructed by
substituting in the indicated place the interpretation of

this same node with typeflag NUMBER., (In the case of howmany
questions, the rule assumes that the syntactic structure above
containes only the dummy verb EXIST and therefore leaves no
opening in the quantifier for the later insertion of the higher
proposition.

RULES with typeflag NUMBER returns only the single rule
D:NUMBER whose right-hand side is:

(SSUNIONF (SEQL (NUMBER X / (# 0 NRULES) : (# O RRULES)))).
Here, the function SSUNIONF is a function which can grab
quantifiers like PRED but which would insert them inside the
NUMBER function instead of around the outside. SEQL is an
enumeration function which will show up in the final interpretation.
This rule calls for the interpretation of the NP node with
typeflags NRULES and RRULES which end up returning (SEQ SAMPLES)
and the default restriction T, respectively, with no cuantifiers
arising from either source. After the insertion of these values
and the evaluation of SSUNIONF the result of this call to INTERP
is (SEQL (NUMBER X15 / (SEQ SAMPLES) : T)) with no additio .11l
quantifier,

The right-hand side of the rule D:HOWMANY now gets resumed
and after substitution and evaluation of the QUANT, the resulting
SEM is X15 with an associated QUANT of: '

(FOR THE X15 / (SEQL (NUMBER X15 / (SEQ SAMPLES) : T)): T ;

(PRINTOUT X15))
(Normally such a QUANT would contain a marker DLT indicating
the place where the interpretation of the higher sentence
was to be inserted, but because of the special nature of
the howmany determiner this quantifier is completely self-
contained.) This quantifier is returned to the higher level S
interpreter whose PRED grabs it, and from there it ripples its

way to the top where it becomes the final interpretation,

2,4 The Retrieval Component

2,4,1 The TFunction Fxecute

In the NASA LSKNLIS, the retrieval component resides in
a separate fork of the TFNFX time-sharing svstem which we will
call the lower fork or retrieval for}. This fork is under

the control of the language processinag fork.

When the semantic interpretation component has finished
constructing the interpretation of a reaquest, it calls the
function FXFCUTE with this interpretation as its arqument.

The function EXECUTE passes the interpretation to the retrie-
val fork by means of a buffer file OBUF (for auerwv buffer) and
wakes up the retrieval fork. When the retrieval fork has
completed processina the aquery, it will have written the
answer (s) onto a file HITFILE, and it will then write the
number of hits intc a huffer file PPUF and return control to
the upper fork. The function FXFCUTF then prints out the
answer if there are fewer than 5 hits, or notifies the user

of the number of hits otherwise and asks him vhether he wishes
to see the answers. The function FXFCUTF, thus serves as

the access port to the lower fork.

2.4.2 The Data Base Tahbles

The Data Base of the system consists of two tvpes of
information~~chemical analvsis data on the lunar samples, and
keyphrase indexing of the publications concernina the samples.
Examples of these two types of data are given in figures 2-9
and 2-10.

5 MINTABLE, ;6

SAMPLE PHASE

S1Ap0A2 OVERALL

S10473 OVERALL
Fiqure 2-9,

THU 7-JAN-71 10:21A¥

CONSTIT, CONTENT

AL26 120,09

BE7 8.2

C 190,90
230,0

Co056 un,

c13 8,7999999

H .83999G99

H3 34,02

K20 .13251999

MN5y 28.2

N 125.0

NA22 51.7

S . 19699999

SCusp 8,9

S3u4 3.5

TH 1.,9200092

TIuy 2,5

u .48999999

AL204 12.429999
9,636u4499
174203382
11,7

AL25 T4,
75,7
Tlhe?

BA 164,09
176,07
224,90

BE 1,5

BE7 100,47

CAQ 11.129999
11.613362
11,7

CE 45,5
37.2
U1,3pn0008
10,120000

Co056 43,7

€057 43,4

coen 1.9

CPX 54,199999
51,699999

CR203 .27181999
.28312999
. 25999999

UNIT
DPM/KG

PPN

DPM/KG
DEL
€C/G
DPM/XG
pCT
DPM/XG
PPM
DPM/KG
PCT
DPM/KG
DEL
PPHM
DPM/KG
PPN
pCT

DPM/KG

PPN

DPM/XG

pPCT

ppM

DPM/XG

CITATION
n7T2-237

D77-228
Nn78-234
n72<237
D7A-22R8
DTA-24L9

D72-237

D7@-234
D74-237
D72-22R
D7P-237
D73-228
D72-237

D73-2#45
D7A-20R
N73-216
DTR-244
DT7A~237
D724 1
DI2-260
D72-203
D73-215
NT2-216
n73-223
D72-237
D72-285
DIRA-216
DT2-2WiL
D72-215
DT2-216
D74-220
D72-2¢3
DIR-21F
DIN-237
DTA-2u1

D7d-15u
D7B-173
DIA-203
DIF-216
D70-24U

A Sample of the Chemical Mnalysis Data

TAG

= RSB B IS BN

NSRS BRCS IR BN SN |

=

VW

S

5 PHRTABLE, ;1 WEL 16-DEC-70 2:21pPM

((ABRASION) (D7y-686 L7Y-£96))

((ABSORBFD GAMMA HADIATIOMN) (D7¢-497))

((RBSORBFD GAS) (wlE=-129))

((ABSOFPTION) (D79-024 D70-368 D7¥~071 L72-072 DIY-897 D70-899 D72-1027
D72~1¥8 D7D-117 278-142 DTP-126 D78-131))

((RBSURPTION BAND) (D/J-268 D7A=-188 D78-11% D7¢-.122 D70-126 D70-~1358))
((ABSORPTION COEFYICIENT) (D74-271 D7@-117))

((ABSORPTION COEFFICIENT MERSUREMENT) (D74-211 D7IR-117))

((ABSORPTION PEAK) (n/0-147))

((ABSORPTION SPECLROMETRY) (D70-136))

((ABSORPTION SPECTRUM) (D7@-126 D7@-131 D70-135))

((ABUNDANCE ANOMALY) (D79-222))

((ABYSSAL BASALT) (D79-P24 D70-827))

((RBYSSAL SUBALKALINE BASALT) (D7@=027))

((ACCELERATING POTENTLAL) (D72-357))

((ACCESSORY CHROUMLITE) (D72-086))

((ACCESSORY ILMENITE) (D7¢-d86 D7R-096))

((ACCESSORY OLIVINE) (D72-283))

((RCCESSOKY PHASF) (D/@-262 D7A-371))

({ACCHFTION) (D72-21¢ D72-212 D74-B55 D78-487 D7@-127))

((ACCRETTION STAGE) (D/3-212 D7@-B17 D70-066 DT2-087))

((ACCRETICNARY LAPILLL) (DU7@-0¥28 D78-085))

((ACCRETIONARY RIM) (V72-885))

((ACCRETIONARY STRATIGRAPHY) (D72-087))

((ACCUMULZATION SEYUENCE) (D72-085))

((ACHONDRITE) (D74-£2> D7¢-226 D70-0¢8 D70-012 D72-215 D72-018 D78~022
D76-0P23 D7P-246 DTD-047 P70-229 D70-P32 D70-249 D70-263 D72-.266 D70-122))
((RCHONDRITE METEORITL) (D79-212 D7¥-014))

((ACICULAR CRYSTAL MQUE) (D75~871))

((ACICULAR ILMENITE) (D7¢-062))

((ACICULAR PLAGIOCLASE) (D72-269))

((ACICULAR STLICOMN) (U72-262))

((ACID BASALT) (n/2-269))

({ACID GLASS) (D7¢-35/))

({ACID HYDROLYZATL) (w73=-135))

((ACID LEACHING)Y (D72~-254))

((RCIV SOLUTION) (D7¢-132 D77-139 D72-142))

((ACIDIC GLASS) (D70-069))

((ACTLINIUM) (D72-021 w73~-¢88),

((RCTIVATION CROSS SECTION) (D72-127))

Figure 2-10. A Sample of the Kevphrase Indexina Data

2,30

In the system, these two files are stored in different ways.
The keyphrase information is stored symbolically on a disk file
in essentially the form that appears in figure 2-10. Keyphrases
are looked up with a binary search of this file in order to
obtain the associated list of references. The chemical analysis
data on the other hand is stored in a compressed, bit-coded
form on a binary file which is windowed into an array in the
virtual core memory by the hardware page-mapping facilities of
TENEX. The use of this type of coding provides an extremely
compact and rapidly accessible representation. Detailed
descriptions of the data structures and retrieval functions

of the data base are included in Appendix F.

2.4.3 The Formal Query Language

The data base of the LSNLIS system is accessed by means of
a formal query language into which the input English requests
are translated by the language analysis component. Examples of
this language have already been seen in previous sections. The
language is essentially a generalization of the predicate
calculus which could either be manipulated as a symbolic
expression by a formal theorem prover to derive intensional
inferences or be executed directly on the data base to derive
extensional inferences. Only the latter, extensional inference

facility is used in the current LSNLIS.

The query language contains essentially three kinds of
constructions:

designators, which name objects or classes of objects

in the data base (including functionally
determined objects),

propositions, which are formed from predicates

with designators for arguments, and

commands, which take arguments and initiate actions.
For example, S10046 is a designator for a particular sample,
OLIV is a designator for a certain mineral (0Olivine), and
(CbNTAIN S10046 OLIV) is a proposition formed by substituting
designators as arguments to the predicate CONTAIN. TEST is a
command function for testing the truth value of a proposition.
Thus, (TEST (CONTAIN S10046 OLIV)) will answer ves or no depending
on whether sample S10046 contains Olivine. Similarly, PRINTOUT
is a command function which prints out a representation for a
designator given as its argument.

The major power and usefulness of the formal query language
comes from the use of a quantifier function FOR and special
enumeration functions for classes of data base objects to carry
out extensional quantification over the data base. The format
for a quantified proposition is:

(FOR QUANT X / CLASS : PX ; QX)
where QUANT is a type of quantifier (EACH, EVERY, SOME, THE,
numerical quantifiers, comparative quantifiers, etc.), X is

a variable of quantification, CLASS determines the class of

objects over which quantification is to range, PX specifies a
restriction on the range, and QX is the proposition or command
being quantified. (Both PX and QX may themselves be quantified
expressions.)

The specification of the CLASS over which quantification
is to range is performed in the system by special enumeration
functions which (in addition to whatever other parameters they
might have) take a running index argument which is used as a
restart pointer to keep track of the state of the enumeration.
Whenever FOR calls an enumeration function for a member of the
class, it gives it a restart pointer (initially NIL) and each
time the enumeration function returns a value it also returns
a new restart pointer to be used to get the next member.
Enumeration can terminate either by returning NIL indicating
that there are no more members or by returning a value and a
NIL restart pointer indicating that the current value is the
last one. (This latter can save one extra call to the enumeration
function if the information is available at the time the last
value is returned--e.g. for single valued functions.)

The enumeration function formulation of the quantifier
problem frees the FOR function from explicit dependence on the
structure of the data base--the values returned by the enumeration
function may be searched for in tables, computed dynamically,
or merely successively accessed from-a precomputed list. A
general purpose enumeration function SEQ can be used to enumerate

any precomputed list, and a similar function SEQL can be used

to enumerate singletons. For example:

(FOR EVERY X1 / (SEQ TYPECS) : T ; (PRINTOUT X1))
is an expression which will printout the sample numbers for
all of the samples which are type C rocks (i.e. breccias).

The bread and butter enumeration function for the chemical
analysis data base is the function DATALINE which takes as
arguments designators for a data file, a sample, a phase name,
and a constituent and enumerates the lines of the data file
which deal with the indicated sample/phase/constituent triple.
Other complex enumeration functions are NUMBER and AVERAGE
which take an argument format similar to the FOR function
and perform counting and averaging functions. Detailed
descriptions of these and other retrieval functions are given
in Appendix F and examples of the interpretations of various

requests are given in Appendix G.

2.34

Chapter 3

THE GRAMMAR

The translation of an English request into an
appropriate retrieval expression proceeds in three main
stages: first, the English sentence 1is converted 1nto a
"canonical form" in which the syntactic relationships
holding between constituents are made expllcit; next, the
canonical form, or parse, 1s mapped 1into a semantic
interpretation which highlights the 1logical connectlons
between terms; and finally, the semantic interpretation is
executed in the data base to produce the answer to the
query. In this section we discuss 1n some detall the first
stage of the translation process, the parsing of the 1input

string of English words.

3.1 MOTIVATION AND OVERVIEW

It 1s a well-known fact about natural languages that
sentences which have different words in different orders can
have essentially the same meanings, while superficlally
similar sentences can have very different meaning; this
insight is the cornerstone of the transformational theory of
grammar (Chomsky, 1957, 1965). For example, active
sentences (1) have corresponding passive sentences (2) which

are virtually synonymous, and sentences with existential

3.1

"there" subjects (3) are synonymous to sentences with
ordinary subjects (4):
(1) We need some information.

(2) Some information is needed by us.

(3) There are many documents in the file.

(4) Many documents are in the file.
On the other hand, sentences (5) and (6) have similar
sequences of '"parts-of-speech", but the syntactic and
logical relationships between the words are different:

(5) John is eager to please.

(6) John 1is easy to please.
In (5), John 1is to do the pleasing, whereas in (6) John 1is
tote pleased by someone. Lingulsts account for these facts
by positing a form of gyntactic description more abstract
than Just a specification of the linear arrangements of
words 1in sentences. 1In brief, transformational grammarians
characterize the syntactic relationships in a sentence in
terms of a "deep structure" -- a structural description,
usually in the form of a tree with labeled nodes, from which
the string of words can be derived by applying a sequence of
formal rules called transformations (Chomsky, 1965). Thus
the similarity in meaning of actives and their corresponding
passives 1s due to the fact that the sentences have the same
deep structure; the different strings result from the
application - of slightly different sequences of

transformations. Sentences with similar superficial

3.2

characteristics but different syntactic relationships, such
as (5) and (6), result from the application to different
deep structﬁres of transformation sequences with similar
outputs. Finally, ambiguous sentences can be derived from
more than one deep structure, while ungrammatical
word-strings have no corresponding deep structure. In this
context, the major task 1n the syntactic analysis of an
input request may be seen as the problem of determining the
appropriate deep structure (s) for a given string of English

words.

Unfortunately, linguistic theory is not of much help
here. Transformational grammars are designed to enumerate
the <class of possible deep structures (by using a
context-free phase-structure grammar) and then to generate
all and only the sentences of a language from the set of
deep structures. Very 1little has been said about how to
find the deep structure for a given string, and, 1in fact,
the few attempts at "reversing" the sequence of
transformational operations that have been made have not
been very successful (cf. Petrick, 1965; Zwicky, et al.
1965). Thus, for the syntactic analysis component of the
LSNLIS English processor we have used an augmented recursive
transition network parser, described -elsewhere 1n this
report and in Woods (1970), which surmounts many of the
difficulties encountered in earller efforts at

transformational recognition. Our goal is still to map the

3.3

input request into a deep-structure-like representation.

A transition network grammar consists of a set of
states connected by a set of labelled directed arcs. The
label on an arc determines whether the transition <can be
made, based on the current 1input word and the previous
analysis history of the input string, and also specifies a
set of actions to be executed if the transition 1s permitted
(section 2.2 of this report gives a detailed description of
the grammatical notation and the operation of the parser).
The sequence of transitions taken 1in the course of an
analysis reflects the superficlal arrangement of words in
the string; the actions on the arcs are wused to build up
sectlions of the deep-structure tree and hold them 1in
"registers" until they are combined into larger sections
and, eventually, 1into the complete representation of the
input string. Analysis of the input string thus proceeds
from left to right on two related levels: words in the
string are identified by arc transitions, and at the same

time, the deep-structure i1s being fashioned in the

registers.

3.4

S

dA XNY dN 10

JBWWEBJIZ }JIOM38U UOT3TSUBJIY 9y, °T-£ odndtyg

(A vINndOD
1v3ady)

rav yiA
© NGO 1VD) a

© d3ud LVD

(CA SMOJH04 LV3I4#) ((OL HOJ) GUM) ONY) / IdMOD HSNd
L AQY Lvd WA dWOILVHL 1V3IsH)

{d3¥d L¥I) /dd HSNd i dNNr

(A MBOON LV33l} {{1VHL HOJ)
QUM) ONY) / 1ere00 HSNd 9

{reo ui39)

A F00N! 1¥1 4Y4) ONY) AdN xn?m

I3

® dN/¥04 MSNd
Q¢ /1dNOD HSNd

L
/dN
HSNd

JYON Qum

9 dN/ H04 HSNd

8 /1dN0) HSNd
8 /IdNO0) HSNd
¥ /7dN0) HSNd

1 dN/S HSNd

v| rav/da

(QISNIUINN 4439} A LVD

Q@ dnnr dN 0dN @v

/\ - Q&
s A'W QQQ o,
¥I1S 1WWN) dOd N “
%
1 Qum 1 saN &
xm:m ;98:»1..53«»3

AdAl O QUM

iw\w\m.v ¥ MNOD LY))
<4

3, \u
& v
% +Qv

e,

N
)
1 AQY 1vD *0?» o .00 s, <5 9 /1dmOI HSNd
e N Y f‘ < Y
4 ~ w ” '

’
] ,E.a:m ¥139) ((3IW3IHL H139){{(IQ0INd BL139} (A Y139 dWNr g
| QV3H/dA A/dA Xnv/s
] Jnnr g (FANS ¥139)¥IINING! (MBNS 5130 ONV) HO) dmnt (SNL1 4439} A 1¥D 1 393M1 gum
* ’ v € 8 (0 Q¥M)/dd HSNd
~ ’
(AT 30 G C2 s t
" re0s 41Ny) LAGY 9D A
(IYINL ¥139) m (93N ¥T1INN >
QNY) /dN HSNd L ALy »|Q O L¥D
—-| > >
- o
<3 & dN ndN «
2|< /m\ a
rav/dnod o ©

rg
Y w3 ravien
\ /
N\ ’
See” L MOH QuM

3.5

%
F]
e
-

©"NOJ UVD

&

4 /dN HSNd

-

JBUWEJIS MJIOM39U UOT3TSUBJIY] 3YyJ

(PaNU3uodD)

2

(AQYSNVYL Lv34d) AQY LVD

1817 1v)

dALIN/T1dNOD HSNd

/1dN0D HSNd

8 1IN/Y 151

B 4.2\« Iw:mg

/4 HSNd

8 HM /¥ HSNd

1 AQY 1Y)

dS3Y/dN

(oL avm) 8 rav ivo

dN/HD3 HSNd S¢ 15504 v o7
LKL L i78an wena

(1YvdS3ud
4139) A LVWD

I1-€ 8and14g

(QISNILNN A INTINI)

AVHL

{93N ¥NT1INN)
OIN 1Y)

A/7aM
10000

A/dA HSNd

{(d38d N}
dd HiA 8 A Lvd e:»xq&mca
X
oN
i 1vd
0 g 2

) o0 18V40IIM/dN, d

j88 E7

2 o

1 dwnr B

B d38d/dd Hond -v¥3dns 3

B /dd H5Nd w2 /dN e

(3AILILEYY 4139) dd MIA [y o
(3NO O¥M) O¥d 1VD \ \N M
1 0dd 1VD k AR

Q@ d3dd /dd HSNd

((O9NONY 40) Q¥Mm) /dd HSNd

({9144OHdYNY ¥IINN) (40 Q¥M) ¥O)dNNT

((974YOHdYNY H139)((J0 Q¥M) LON)ONV) dNNT

3.6

JRUWRJIZ }JIOM3aU UOFJTSUBIL ayf

(PaNUT3U0D)

(ISOHM QM)

d38d/H
o
—‘mﬂit;

*I-£ 2undT4d

{ISOHM QUM)} /dN HSNd

"I WOHM QUM

1 (LVHL OHM HOIHM) WIN

(AQY HIIW)
dn0d Lvd

d3ud/dd e aqia Vs

(3dAL H11AN) 4 qum

HOMD LVD

1300/4d

L L¥V/dN HSNd

/N3¥vd

1 /dN HSNd

1 udN 1v)
NN ERFUNY

HdN HdAN/HdN

3.7

The configuration of arcs and states 1in the grammar 1is
shown 1in Figure 3-1. Unless the order of the arcs is
explicitly indicated by numbers on the arcs, they are
ordered clockwise from the top of the state. The symbol &
on an arc indicates that there 1s a condition associlated
with the arc which is not included in the figure. See the
grammar listing in Appendix B for the detalls of these

conditions.

The parses developed by the grammar resemble the
deep-structures described by Chomsky (1965), with some
elements borrowed from Stockwell et al. (1968) and some
included because of special characteristics of the lunar
sample requests. Briefly, a sentence consists of a subject
noun-phrase, an auxilliary-verb constituent specifying the
tense, modallity, and aspect of the sentence, and a
verb-phrase containing the main verb, the direct and
indirect objects and predicate complements (if any), and
optional adverbial and prepositional-phrase modifiers. A
noun-phrase consists of an optional determiner and
adjectival modifiers, a head noun, and optional restrictive
and non-restrictive post-nominal modifiers. A precise
specification of the form of deep-structures is contalned in
the listings of the grammar actions SBUILD, NPBUILD, and
DETBUILD in Appendix D and in the annotated listing of the
grammar itself (Appendix B). Below we will focus on the

grammatical strategles used to identify the varlous

constituents and not on the structures 1in which they are

placed.

3.2 GENERAL DESCRIPTION OF THE GRAMMATICAL STRATEGIES

In this sectlon we discuss and 1llustrate the overall
organization of the grammar and indicate in some detail the
strategies wused to deal with particular syntactic
constructlons. A bird's eye view of the grammar was given
in Figure 3-1, in which states are represented by circles
enclosing the state name (for example, S/DCL) and arcs are
represented by arrows connecting the states. The ares are
labelled in the diagram with their types (CAT, WRD, MEM,
VIR, JUMP etc.) and frequently, with thelr conditions also.
The actions on the arcs and the detailed specification of

complicated conditions may be found in the annotated listing

in Appendix B.

The parser allows state names to be arbitrary LISP
atoms, but we have adopted the convention that state-names
indicate the unit of the sentence being analyzed and
constituents of the unit already identified, separated by a
slash ("/"). Thus S/AUX signifies that the S-level of the
parse 1s ©being developed and that we have succeeded either
in finding an auxilliary verb or in establishing the fact
that the sentence has no auxilliary. The diagram also

expresses another convention: unless the arcs leaving a

state are explicitly numbered 1in the diagram, the clock-
wise order of arcs from the top of a state-circle
corresponds to the order of arcs in the grammar listing and
the order in which transitions are attempted. By
convention, the initial state of the whole grammar is state

S/.

3.2.1 THE SENTENCE LEVEL NETWORK

1. The basic strategy

With these conventions established, we can examine the
way 1in which the parser wuses this grammar to analyze
sentences: Conslder the simple sentence (7):

(7) I need information.
The underlying structure of (7) 1is 1intuitively obvious,
given only a slight familiarity with high-school grammar.
The word I is the subject, NEED 1is the verb, and INFORMATION
is the object. The parser begins by comparing the string to
the gammar at state S/. The first word of the string (I)
cannot start an English question, so the predicate QSTART
fails, ruling out the first arc but permitting the third.
Since I is not PLEASE, the second arc is also excluded, and
so the third arc is the first transition. We jump to state
S/DCL, having established that the sentence 1s declaratilve.
Since a JUMP transition does not advance the input string,
we are still looking at I. At S/DCL we try to find the

subjJect noun-phrase, the word THERE in subject positlon, or

3.10

a subject complement. In thils case, the push to the
noun-phrase network (arc 2) 1s successful, returning the

structure (8):

(8) NP

H—"U-——-

We enter state S/NP with NEED as the current word and (8) in
the reglster SUBJ. Since NEED is the tensed verb, the CAT V
transition is permitted, and the actions save the tense
(present), the person-number code (X3SG = "anything except
third-person singular"), and the root form of the verb
(need) 1in the apropriate registers. We enter S/AUX looking
at the last word of the sentence. Since we have already
identified the subject and since 1ts person and number agree
with those of the verb, we Jjump to VP/V, and from there we
Jump to VP/HEAD. VP/HEAD 1is a landmark: whenever we reach

it, we have identified the main verb (the head of the verb
phrase) and the subject, and we can begin to look for
post=verbal constituents. In this case, since need 1s
transitive, we push for the objJect noun-phrase at arc 3, and
successfully return with the object, INFORMATION. This 1is
the end of the string, so we continue jumping through the
grammar from VP/NP to VP/VP and then to S/VP, from which we

pop the recovered deep structure:

3.11

S

DCL NP AUX VP
PRO TTS \ NP
! |
I present need DET N

NIL information

This 1is the basic strategy for simple, active,
declarative, transitive sentences: at S/DCL, we have decided
that the sentence 1s declarative; at S/NP, we have the
subject; at S/AUX, we have the first (and only) verb, which
carries us through to VP/HEAD; at VP/NP we have the direct
object, and we then jump all the way to S/VP, where we pop
the completed parse. For intransitive sentences such as
(9),

(9) I went.

the jump arc (arc 1) is taken from VP/HEAD 1instead of the
PUSH NP/arc, and the resulting structure does not have the

NP node in the VP.

From thils basic strategy, more complicated sentences
are analyzed by varying and elaborating one or more segments

of the analysis path.

2. Auxiliary verbs

If the sentence has one or more auxiliary verbs besilde

the main verb, as in (10):

3.12

(10) I could have been going.

the analysls path is embellished at state VP/V: the CAT V
arc at staté S/VP picks up the modal verb COULD and stores
it h the register MODAL instead of V. Then at state VP/V,
HAVE satisfies the CAT V arc, so the loop is taken, making
HAVE the main verb, Since BEEN also satisfies the CAT V
arc, the 1loop 1s taken again, and with HAVE in V and BEEN
marked as a past participle, PERFECT 1s added to the aspect
register and BE 1s placed in the V register, and we re-enter
state VP/V with GOING as the current word. Again, the CAT V
arc 1is permitted, GO 1is the main verb and PROGRESSIVE is
added to ASPECT. Finally we make the Jjump to VP/HEAD,
having identified, as before, the main verb and the subject.
The rest of the analysis resembles that of the simple
intransitive (9), and the deep structure is similar except
that the node AUX has been expanded to (11):

(11)

TNS ~ "TODAL

PAST PERFECT PROGRESSIVE can

3. Passives

It was pointed out earlier that passive sentences (12)
have the same meanings as their corresponding actives (7).
We now show how the grammar maps them 1into the same deep

structure.

3.13

(12) Information is needed by me.
The same sequence of transitions is taken for the passive as
for the active, up to state VP/V, although the constituents
identified and saved in registers differ. Upon entering
state VP/V, the register SUBJ contained I and V contained
NEED for the active, while for the passive, SUBJ holds
INFORMATION and BE is the main verb as in (13):
(13) Information is available

At VP/V the analyses diverge. For the active the current
word 1is INFORMATION, ruling out the CAT V loop, so the jump
arc is taken to VP/HEAD, where the object is picked up. For
the passive, the current word 1s NEEDED, the past participle
of NEED. In this case, the CAT V arc 1is allowed, the
subject INFORMATION 1is placed on the hold 1list by the
conditional action, the indefinite noun-phrase SOMETHING 1is
placed 1in SUBJ, and BE 1is replaced by NEED in V. At this
point, we have identified the main verb, we have partially
undone our previous assignment of INFORMATION as the
subject, and the current input word is BY. AGFLAG has been
set to indicate the possibility that the real subject 1is in
a by-phrase later on. We now make the jump to VP/HEAD, but
the push for the object noun-phrase fails with BY., Instead,
the VIR NP arc removes INFORMATION from the hold 1list and
places 1t 1in the obJect register. None of the arecs at VP/NP
can deal with BY, so we jump to VP/VP, where we take the WRD

BY transition to VP/AGT, slnce AGFLAG 1s set. Here we push

3.14

for a noun-phrase, find ME, and override the 1indefinite
subject SOMETHING that we set up at VP/V. We continue along
the basic analysis path and pop a structure at S/VP

identical to that for the active. If the by-phrase had not
been found in the sentence, the subject at this point would
still be the 1indefinite SOMETHING, which agrees with our
intuitions about the meaning of passlivized sentences with

missing agents.

4, Questions

In English, questions introduce a number of variations
in the wusual subject-verb-object sentence forms handled by
the basic strategy. The states emanating from S/Q, and also
some from S/, are designed to cover these possibilltles. Ve
recognize three major types of questions, yes-no (14a),
question-pronouns and question-adverbs (1l4b and c), and
question-determiners (1l4d and e).

(14)
a. Does each type/A rock contain krypton?

b. What is the average krypton concentration
in type/A rocks?

c. How old is sample 10003?
d. Which rocks contaln olivine?

e. How much olivine does each rock contain?

A yes-no question 1s characterised by the fact that a modal

or aaxiliary verb occurs before the subject. This may be at

3.15

the beginning of the sentence or after any number of fronted
prepositional phrases. The predicate QSTART at state S/
precludes any other pre-subject verb, so the jump arc at S/Q
brings us to S/NP with only the register TYPE set and with
"pe", "have" or a modal as the current word. We pick up the
verb 1in the ordinary way, and arrive at S/AUX with a verb
but no subject. Hence, we transfer to S/NO-SUBJ where, for
(14a), the PUSH NP/ arc 1is successful, returning "each
type/A rock". Thls agrees with the person~-number code of
the verb, and so becomes the subject. From state VP/V, the
analysis is identical to the corresponding declarative, and
the structures are identical except that the question

structure has a type node "Q" instead of "DCL".

A question-pronoun or adverb 1is a WH-word that can
stand by itself as the object of interrogation, for example,
WHO, WHAT, WHEN, WHERE, WHY, and HOW. The root forms 1n the
dictionary for these items are complete NP or ADV
structures, and the CAT QWORD arc makes a copy of this
structure (so that other parts of the grammar do not do
permanent damage to the dictionary). Most of the pronouns
can serve as either the subject or an object of the
sentence; these are saved in the register WHO untll further
information determines whether they are to be moved into
SUBJ or held for the post-verb modifier arcs. The
question-adverbs, WHEN, WHERE, and HOW, and the pronoun WHOM

cannot serve as the subject, so they are held immediately,

3.16

to be picked up later by VIR arcs. If the question-adverb
is 'how", a detour is made to check 1if the following word is
an adjective- or an adverb, as in (1l4c) above. If so, the
adjective or adverb is also held, to be picked up later by a
VIR arc. In any case, we enter state S/NP looking at the
first verb. If there 1s a potential subject 1n WHQ, and the
first verb 1s not an auxiliary or modal, then the WHQ word
must be the subject, as 1in (15), so we rearrange the
registers.

(15) wWho wants the information?
If the verb is a modal or auxiliary, then the WHQ word is
st11l a possible object, as in (14b), so we postpone a
decision and enter S/AUX without a subject. Here, we
transfer to S/NO-SUBJ, where for sentences such as (1l4b), we
push and recover the full noun-phrase subject. This means
that WHQ contains an object, so we add it to the hold-list.
For sentences such as (16),

(16) What 1s available?
where there is no noun-phrase in this position, we know at
last that the WHQ must be the subject, and the registers are
rearranged on the Jjump arc. From VP/V, the analysis for
QWORD questions follows the basic strategy, except that VIR
NP or VIR ADV arcs are taken if the QWORD structure was

held.

If an adjective was held from a "how<adjective>"

construction, and the main verb is "be", in state VP/V, the

adjJective replaces '"be" as the main verb. Thus, the

structure bullt from "How old is Sample 10003?" is:

S Q
NP NPR SAMPLE
10003
AUX TNS PRESENT
VP \ ADJ OLD
ADV HOW

Finally, questions wlth question-determiners fall into
two groups, those associated with count nouns (with QDETs
"which", "what" and "how many") and those asociated with
mass nouns (with QDET "how much"). The first group are
analysed as questioned noun phrases, with the noun phrase
containing the question-determiner becoming the deep
structure subJect, independent of 1its surface structure
function. This 1s very similar ¢to a predicate calculus
representation and makes it clear that the questioned noun
phrase, in general, has the widest scope. For example,(1l4d)

is analysed as:

S NPQ
NP DET WHQ
N ROCK
NU PL
S QREL
NP DET WHR
N ROCK
NU FL

AUX TNS PRESENT
VP v CONTAIN
NP NPR OLIVINE

i.e. "Which rocks such that they contain olivine (exist)?",

and (17):

(17) In which phases does S10005 contain krypton?

is analysed as:

S NPQ
NP DET WHQ
N PHASE
NU PL
S QREL

NP NPR S10005
AUX TNS PRESENT
VP Vv CONTAIN
NP NPR KRYPTON
PP PREP IN
NP DET WHR
N PHASE
NU PL

i.e. "Which phases such that S10005 contains krypton in

those phases (exist)?"

When a question-determiner like "what", "which" or '"how
many" starts a sentence, 1t 1involves a push from state
S/QDET for a full noun phrase structure with a
gquestion-determiner, Since the NP/ network does not
recognize WH-words at the beginning of a noun phrase, the
determiner must be pilcked up at the S-~level and sent down
into the DET register. Also sent down is a flag 1indicating
that the remainder of the sentence, after the noun phrase
containlng the question-~-determiner should be made a relative
clause of type QREL on that noun phrase. When the complete
noun phrase 1s returned, it 1s placed in WHQ for S/UNP to

pop. This completes the analysis.

The noun phrase containing a question-determliner can

also be 3in a prepositional phrase at the beginning of the

3.19

sentence, In this case, we push for a prepositional phrase
in £ate S/, but note at state PP/PREP whether the followlng
noun phrase begins with a question-determiner. If so, the
determiner 1is again sent down 1nto the NP/ network and put
into the DET register. When the noun phrase 1s returned, it
is lifted up to the S/ network and put into the NP register
there. The prepositional phrase 1s also held, with the
feature FRONTED. States S/QP1l and S/QP2 relativize the held
prepositional phrase (i.e. replace the determiner of the
embedded noun phrase with WHR), then pusn for a relative
clause of type QREL. The relativized prepositional phrase
is sent down 1into the relative clause as a verb firase

modifier (VMOD). When the relative clause is returned, it
is attached to the original noun phrase containing the
question-determiner, and the whole phrase is placed 1n the

WHQ register for S/NP to pop. This completes the analysis.

The second group of questions contalning
question-determiners comprises those questlions asking "how
much". They are analyzed along the 1lines of QWORD
questions, though, again, the question-determiner must be
picked up at the S-level and sent down into the NP network,

For example, (ld4e) 1is analyzed as:

NP DET EACH
N ROCK
NU SG
AUX TNS PRESENT
VP \'s CONTAIN
NP DET POSTART COMP ADV HOW
MUCH
N OLIVINE
NU SG

The reason for using this analysls, rather than the
more elaborate one dilscussed previocusly for the other
question~determiners, is that the determiner "how much" does
not interact with other determiners to cause scope problems.
Thils was one of the reasons for adopting the previous, more

elaborate analysis.

5. Existential THERE.

Sentences 1n which a form of the verb BE (or EXIST)
occurs often have counterparts 1n which the subject is
replaced by the word THERE and the real subject occurs after
the BE as in (18):

(18) There is a document.
If BE is in fact the main verb, the sentence is interpreted
as asserting the existence of 1its 1real subject. For
sentences of this type, the WRD THERE arc i1s taken at state
S/DCL, setting the register THERE but leaving SUBJ empty.
We are still allowed to jump from S/AUX to VP/V, but we

cannot go on to VP/HEAD without the subject. Thus, we push

for a noun-phrase on the second arc from VP/V, having seen a
THERE=BE combination. The noun-phrase A DOCUMENT is
returned, and since it agrees with the verb's person-number
code, 1t ©becomes the subject. The rest of the analysis is
ordinary, except that when we finally do jump to VP/HEAD, if
the main verb 1s still BE, we convert it to EXIST. Thus the
structure for (18) is:
S DCL
NP DET A
N DOCUMENT
NU SG
AUX TNS PRESENT
VP Vv EXIST
Notlce that thls strategy allows the real subject to occur
at any position 1in the string of auxiliary verbs following
THERE, as long as the lmmedlately preceding verb 1is BE or -
EXIST. Thus the sentences in (19) can be parsed properly:
(19)
a. There could be a document.
b. There could have been a document,
c. There could have been a document telling
about...
An existentlal THERE can also occur in the subject position
of a question; hence the WRD THERE arc at state S/NO-SUBJ.
If there is a WHQ in this situation, it becomes the subjJect.
Otherwise, the subject is found with the pusnh arc from VP/V,

as dove, If the WHQ resulted from a QDET guestion, the DO

arc at state S/THERE allows for the resumption of an

3.22

extraposed noun modifier, as in (20):

(20) How many men were there who wanted the

document ?

6. Do=support.

In English the verb DO can occur as a main verb (21la),
as a modal verb with the connotation of emphasis (21b), or
as an auxlliary verb in questions and negations with no
apparent meaning (2lc-d).

(21)

a., They did 1it.

b. The sample does contain Plagloclase.

c. Did they want it?

d. The document does not contain the

information,

The cases exemplified in (2lec-d) correspond to the general
rules that subjects and verbs can be inverted only 1f the
first verb is an auxlliary; if it 1is a regular main verb, DO
is inserted. Similarly a modal or auxiliary must precede
the sentential negation operator, and DO 1s inserted 1f
there 1s no other possibility. In transformational theory,

the process of inserting DO 1s called DO=-support.

The strategy for interpreting DO in the LSNLIS grammar
is as follows: At state S/NP, where the first verb 1s picked

up, DO 1is placed in the MODAL register, since 1t satisfiles

the predicate MODAL, If another verb 1s net found (as in
2la)), then an action on the Jump arc to VP/HEAD moves DO

from MODAL to V, making it the main verb.

In sentences where the subjJect and verb have been
inverted, the subject is sought at state S/NO-SUBJ. If the
PUSH NP/ arc is successful and if DO 1s in MODAL, it 1is
deleted and does not appear in the final parse. Likewise,
if the CAT NEG arc is taken at state S/AUX, a DO 1n MODAL 1is
again removed. Thus semantically empty occurrences of DO
are correctly eliminated, while emphatic and main-verb DO's

are preserved.

7. Imperatives

The strategy for imperatives 1s basically simple. An
untensed (infinitive) verb beginning a sentence, optionally
preceded by PLEASE, marks the sentence as a command.
Imperatives wusually have no overt subject and no modal or
auxiliary verbs, so the arc from S/IF sets up the
understood subject YOU and the tense-indicator PRESENT, and
terminates at VP/HEAD where post-verbal constituents are

analyzed in the normal way.

8., Objects and complements.

We have already seen in the basic strategy, how simple

transitive and intransitive sentences are analyzed.

3.24

Syntactic features on verbs can require other types of
predicate complement structures; the set of paths leading
from VP/HEAD to VP/VP allow for the various possibilities,
and the annotated listing of the grammar should be consulted
to determine precisely how a given sentence will be
analyzed. Here we discuss a few common predicate complement

forms.

The CAT ADJ arc (arc 2) from VP/V allows a predicate
adjective to follow a copula verb such as BE, BECOME,

APPEAR:
(22)
a. The concentration of krypton in S10007 is
large.
b. The basalts are older than the breccias.
c. S10003 appears glassy under UV light.
The adjective is placed in the verb register, preceded by
ADJ and followed by 1ts features. The features come from
both the adjective 1itself and the copula verb. For example,
the verbs constructed from the sentences in (22) would be:
(221)
a. (ADJ LARGE)
b. (ADJ OLD COMPARATIVE)

c. (ADJ GLASSY SEEMING)

Predicate adjectives which form their inflections by

joining '"more" and "most" to the uninflected form will also

3.25

be recognized in state VP/V on the MEM (MORE MOST) arc (arc
3). The uninflected adjective will be recognized in the

following state VP/COMP-ADJ, where the adjective will be
placed 1In the verb register, again preceded by ADJ and

followed by its features.

The paths for one- and two-word adjectives reconverge
at state VP/ADJ, where a variety of complements can be
recognized. For simple comparatives like (22b) above, the
word "than" causes one to move to state VP/ADJ-COMP, where a
simple noun phrase 1s sought. If found, it 1s made the
sentential object. (22b) is analysed as:

S DCL
NP DET THE
N BASALT
NU PL
AUX TNS PRESENT
VP v ADJ OLD COMPARATIVE
NP DET THE
N BRECCIA
NU PL
This path would not be successful 1f a sentence followed the
word "than", rather than just a noun phrase. In that case,
the sentence would be analysed as a sentential complement in
the vrb phrase. Other allowable complements recopnized via

pushes from VP/ADJ are seen in such familiar sentences as

"John is easy to please" and "John is eager to please."

The arcs which push to the COMP/ network permit a
variety of complement sentence structures. Some verbs can

have as their direct object a complete sentence, often

3.26

preceded by the complementizer THAT:
(23) I believe that the document is important.
Other verbs can have complements beginning with the
complementizers FOR or TO, (24) and arc 7 is taken for these
constructlons.
(24)
a. The document seems to be important.
b. We arranged for the document to be

sent.

Indirect-direct object combinations are handled by a
sequence of arcs from VP/HEAD to VP/VP. 1In the simplest
case, the verb is followed by two noun phrases:

(25) Give me the information.

The irst noun phrase 1is picked up by the PUSH NP/ arc at
VP/HEAD, and our 1initial guess 1is that it 1s the direct
object, along the lines of (26).
(26) Give the information to me.

When we find the second noun-phrase on arc 4 from VP/NP, we
rearrange the vregisters, making the previous object the
object of a dative prepositional phrase, as in (26), and
making the second noun-phrase the direct object. The
superficial difference between (25) and (206) are thus
removed. The grammar allows for various combinations of
noun-phrases and sentential complements in the direct and

indirect object positions, but we shall not discuss the

PRECEDING PAGE BLANK NOT LI

DCL nstead of Q.

Finally, in WH-questions where the question word is an
adverb (WHEN, HOW), the adverb is held and picked up on the

VIR ADV arc at state S/VP, where 1t is added to VMODS.

3.2.2 THE NOUN-PHRASE LEVEL

The second major component of the grammar 1is the
noun-phrase level (with state names beginning with NP/). It
is entered by pushes from the S-level and
prepositional-phrase (PP) states, and i1t also has recursive
calls to itself. We now describe some of the strategies

used in the analysis of noun-phrases.

1. The basic strategy

Consider the simple noun-phrase:
(28) the information
At state NP/ the determiner-article THE permits the CAT DET
transition to state NP/ART. From there a number of arcs
permitting optional constituents are by-passed by a series
of Jjumps to state NP/DET. The CAT N arc picks up the noun
INFORMATION, carrying us to NP/N. We then jump to NNP/HEAD
and finally to NP/NP, from which we pop the completed

noun-phrase structure (29):

'

3.29 M;%lmumumv SLANK

(29) NP DET THE

N INFORMATION

NU SG
The significant milestones in the analysis of a noun-phrase
are thus as follows: at HWNP/DET, the series of determiner
constituents (a simple article in (28)) has been analyzed
and the appropriate structure has been built (by the
function DETBUILD) and saved in the repister DEY. At lP/N a
potential head of the noun phrase has been found, while at
NP/HEAD the ultimate head has been determined. Finally, at
NP/NP, the complete noun-phrase has been recoenized. As at
the S-level, more complicatcd noun-phrases are recovered Dby

variations and elaborations of this basic analysis path.

2. Determiner structures

In kEnglish it is possible to omit all constituents
vefore the head of the noun-phrase. For e¢xarmnle, abtstract,
mass and prorer nouns, and plural fcrms of common nouns, do
not even requlre preceding articles, and the jumn arc from
WP/ to IP/ART is provided for such instances., On the otaer
nand, noun-= phrascs permit more than just an artcile in the
determiner structure., Following tnhe analysis of Stockwell
et al. (12€8), we recopnize ordinals and guantifiers (with
accompanying partitives) as part of the "post-article"
structure of determiners. We also recoynize magnitudes

(eegge 9 ppm, T.¢ percent) as part of this structure.

Ordinals 1indicate the position of the object denoted by the
noun-phrase in a sequence of objects (e.g. FIRST, LAST,
NEXT). The constraint 1is that ordinals precede gquantifiers
and other prenominal modifiers, so that (30a) is acceptable

but (30b) is not:

(30)
a. the next five samples
b. *the five next samples
The CAT ORD arc from NP/ART picks up ordinals and saves them

in the register POSTART,.

Following an ordinal, a quantifier 1is allowed as in
(30a). The pgrammar of quantifiers is fairly complicated,
and a separate level (QUANT/) 1s provided for their
analysis. This 1level 1s <called by the first arc leaving
NP/ORD. The QUANT/ states recognize simple cardinals,
magnitudes, and some comparative constructions (MORE THAL,
LESS THAN); this is an area of the grammar that needs
further expansion. If found, the quantifier is added to the
ordinal structure in POSTARY. If a post-article has Dbeen
identified, a partitive can follow which can indicate the
set from which the particular object was drawn (3la-b) or
(in the case of mass nouns) the mass term which it
quantifies (3lc).

(31)

a. five of the samples

b. the last of the measurements

c. five pounds of lead
The partitive is usually introduced by OF, and the first arc
leaving NP/QUANT 1looks for an OF prepositicnal phrase. If
one is found, the head of the noun-phrase beccmes the dummy
element ONES, and the partitive phrase becomes the first
post-nominal modifier. With the head firmly decided, we
transfer to NP/HEAD to 1look for other modifiers. For
certain quantifiers (e.p. ALL, BOTH) the O can be missing;
the second arc at NP/QUANT takes care of this case.
Finally, the partitive structure can sometimes be fronted to
the beginning of a sentence such as (32):

(32) Of the documents, how many are about ...

where a loop at S/ puts it on the hold list for a VIR PP arc

to find. If there 1s no POSTART or if no partitive is
found, the jump to [IP/DEY 1is taken, and DLUBUILD puts the
contents of tLhe DbY and POSYAZY repisters into the final

determiner structure.

3. Pre-=nominal modifiers

After the determiner, a senuence of nodiflers can occur
before a potential nead 1is found. These may include
adjectives, participial forms ¢f vervs, and advert-adjective
phrases. Arecs 1, 4, €, and 7 at state [P/)7, torether with
the arcc at LP/ADYV, pick up these constituents, saving them

in the repister ALDJC. Lxamples of noun-nrnrases with tuese

modifiers are given in (33):
(33) a. the lunar samples
b, a folded schist
¢. an intrigulng fact

d. a very large vesicle

4., Other potential heads

In the basic strategy, the head of the noun-phrase 1is a
noun, picked up on the CAT N arc from NP/DET to NP/N. Three
other arcs parallel the CAT N arc, permitting the head of
the noun phrase to be a title (arc 3) a proper noun (34a)
(arc 10) or a gerund (34b) (arc 8).

(34) a. sample 10026
b. John
¢c. the processing of infermation
In any case, the three arcs place the potential head
(embedded 1n a structure indicating 1its type) 1in the

register N.

A pronoun may also be picked up as the head of the noun

phrase, as in (35).

(35) a. The one which contains kryptonite

b. Eilther one of the phases
c. What is 1t for s10003

The pronoun may or may not be preceded by a determiner (such

as "the", "either", "some", "any"), and the CAT PRO arcs
from NP/ and NP/ART to NP/HEAD are there to recognize both

possibilities.

We have departed from Stockwell with regard to our
analysis of superlative adjectives. This 1is an area 1in
which we are still working, so the following, while 1t
represents the current state of the grammar, 1s not

necessarily final.

Superlatives may function both as identifiers, (36a),
which point to a single specific thing, and as predicates,
(30b), like ordinary adjectives,

(36) a. The oldest type/A rock

b. Rocks which are most representative of the

Apennine Region,

When they function as identiflers, they point to the
one member of some sct which satisfles some requirements,
In (3ba), the criteria require the one type/A rock to be
older than all the other type/A rocls 1n the set, We
recognize a superlative identifier by the definite
determirer "the" preceding it, and analyze it as the head of
its ovn noun phrase., The remalnder of the orisrinal surface
structure noun-pnrase is analyzed as a partitive
construction on the superlative, This indicates the set
over which the superlative ranges. Tor example, (3va) is

parsed as:

3.34

NP DET THE
N OLD SUPERLATIVE
NU SG

PP PREP OF
NP DET THE
ADJ TYPE/A
N ROCK
NU PL
The JUMP NP/SUPERLATIVE and WRD (MORE MOST) arcs from NP/ART
catch one- and two-word inflected adjectives, respectively,
provided the adjective has been preceded by "the'. (We also
treat determined comparatives as 1identifiers and analyze
them in the same way as superlative identifiers. For
example, "the older sample" is analyzed as "the older of the
samples". Here we still have implicit in the structure the

information that the set over which the comparative ranges

has exactly two members,

The above analysis of inflected adjectives as
specifiers is incomplete in the following sense: 1t does not
allow BHr such plural constructions as:

(37) a. The oldest samples

b. The largest Ti02 concentrations
where the criteria for "oldest" and "larpgest" have been
changed so that more than one member of the set can meet
those criteria. It is as if we had scales for the different
properties and a threshold for each property beyond which
that property was considered "most" itself. For example,
"the oldest samples" might include all those samples older

than 3 billion years, while "the oldest bulldings" might

3.35

include all those buildings over 1000 years. As can be seen
above, the threshold can be influenced by the set. We do
not understand this use of inflected adjectives well enough

yet to have incorporated 1t into the current LSIILIS system.

When an inflected adjective does not function as an
identifier, we treat 1s as an ordinary adjective with the
feature "comparative" or "superlative" as appropriate. This
also differs from OStockwell's analysis of superlatives,
which he considers part of the post-determiner structure.
The WRD (MORL MOST) arc and the CAT ADJ arc on NP/DET pick

up undetermined one- and two-word inflected adjectives.

When an 1inflected adjective occurs as a predicate
adjective, we make 1t the main verb of the sentence,
replacing the copula. In thils case, the vert would get the
feature "comparative" or ‘"superlative", plus any features
from the copula which 1t replaces. For example, (3bb) 1is
parsed as:

NP DET NIL

N ROCK
NU PL
S RLL
NP D=T WH
I ROCK

~wU PL
VP V. ADJ REPRLESLINVATIVE
SUPERLATIVL
PP PREP OF
NP DET THE
ADJ APENNTRE
N REGIOIN
NU SG

Inflected predicate adjectives are caught in state VP/V on
the CAT ADJ and MEM (MORE MOST) arcs. From this point on,
they follow the course of normal adjectives, looking for

verb phrase complements and modifilers.

There is a further set of words which may be picked up
as the head of a noun phrase. Thls set now includes the
words "average", "most", "least", "maximum" and "minimum",
but it seems reasonable that the ordinals should be included
in this set too. A member of this set 1s analyzed in a
similar fashion to the determined inflected adjectives. It
is mde the head of a deep structure noun phrase, while the
remainder of the original surface structure noun phrase 1is
put into a partitive construction followlng it. The
partitive indicates the set over which one of these function
words ranges. For example, "the average concentration of
iron 1in Dbreccias" is analyzed as '"the average of the

concentrations of iron in brecclas".

The first CAT N arc from NP/HEAD catches words 1n the
aforementioned set and jumps to NP/AVG, where the partitive
is constructed. From NP/AVG, we continue with the regular

NP processing at HP/HEAD,

5. Noun-noun modification

It 1s very often the case that the first potential head

in a noun-phrase is not the real head. For example, nouns

and proper nouns can be modifiers on other heads (38):
(38) a. Olivine analysis
b. data processing
¢c. Apollo 11 sample
When a potential head is first encountered at state NP/DLET,
we make the tentative assumption that it is, in fact, the
head of the noun-phrase. At NP/N, another potential head
implies that the previous head is actually a nmodifier on the
new read; the loops at state NP/N (arcs 1, 5, 6, 7, 8 and
10) pilck up the new head and add the old one to the 1list of
modifiers in ADJS. This process can be repeated several
times, as in (39). The CAT ADJ arc leading back to NP/DET
means that the series of potential-head-modifiers can have
regular adjectives intersperscd.
(39) a. NAS! mission control operations staff

. Apollo 11 lunar samplcs

A possecssive marker ('s) 1is alsc allowed after a
potential head has been found, and the CAT POSS arc at HP/N
picks 1t up, converts the previous head tc a modifier, and
returns to NP/DET, A gerund at this point might confirm
that the noun-phrase is really a POSS-I1liG complement as in
(L0),

(40) John's winning of the race
and arc 9 at NP/DLT pushes into the S/ 1level to 1look for

this structure,

6. Relative clauses

The jump to NP/HEAD 1s taken only when the head of the
noun phrase has been definitely determined. At this point a
variety of post-nomial modifiers 1s permitted. If we are
looking at a relative pronoun (4la) or a preposition
followed by a relative pronoun (41b), we know that there 1is
a relative clause, and we push to R/ to parse 1it.

(41) a. the samples which contain Olivine
b. the samples in which Olivine was found
Essentially, a relative clause 1is a sentence with a missing
noun phrase, with the head and number of the noun-phrase
that intuitively should fill the empty slot being the same
as those of the noun-phrase in which the relative clause
occurs. Thus we send down a copy of the noun-phrase to bDe

used in the analysis of the relative clause.

The states R/ and R/WH pick up the relative pronoun and
decide whether the copy of the noun-phrase sent down (in WH)
can be the subject of the relative clause. If so, the
noun-phrase 1is placed in SUBJ. Otherwise, it is held for
later use. We then enter the S/ network at S/NP to complete
the analysis. The patch through R/PREP handles the

preposition-relative pronoun clause.

The relative pronoun can also be left out of relative
clauses, and arcs 7 and 9, which push to R/NIL, handle such

"peduced" relative clauses. The reduced relative can begln

3.39

with a noun-phrase (42a), a participial verb (42b), or an
adjective (42¢c).
(42) a. the elements the sample contained

b. the elements contained in the sample

c. the information available
A noun-phrase 1s still sent down to WH, and its wultimate
destination 1is decided at R/NIL. [Notice that there are two
arcs that push to R/NIL -- the arc usually taken is arc 9,
which follows the Jjump to NP/NP. This means that we will
not look for reduced relatives unelss we have failed on
other paths; this strategy improves the efficiencyv of the
grammar, since R/NIL can 1lead to long blind alleys.
However, this also implies that a reduced relative on a
noun-phrase 1In a prepositional-phrase within another
noun-phrase would be attached to the first noun-phrase in
the first parse. Thus in (43) the reduced relative would be

tried first as a modifier of LAl instead of PARK:

(43) the man in the park the girl frecuented

The T8T R/NIL are (arec 7), which calls the SUSPFEHD
mechanism, 1is included to provide the correct analysis in
these cases. It can only be taken if a prepositional-phrase

(I THE PARK) has been found in the current noun-phrase,

Whenever we find a relative clause, we move to state

AP/R, where additional full relatives are allowed until we

3.40

finally Jump to NP/NP,

7. Other post-nominal modifiers

The grammar handles other types of post-nominal
modifiers, including prepositional phrases, sentential
complements, and parenthetic comments. The PUSH PP/ loop
recognizes a sequence of prepositional-phrases and places
them, along with the relative clauses, 1n the register
NMCDS. The register PPFLAG is set, which enables the TST

R/NIL arc and prohlbits the normal PUSH R/NIL.

The PUSH FOR/NP loop handles TO-completments, such as

(ub),

(44) the way to do it
which can appear on a wide variety of nouns. The arcs which
push to the COMPL/ network can only be taken for certain
head nouns, those which take a THAT-complement (e.g. FACT,
STATEMENT, CLAIM) as in (45):

(45) the fact that the documents are not avallable
Notice that THAT can also introduce a relative clause; the
difference between a relative clause and a THAT-complement
is that in the relative clause there 1s empty noun-phrase
slot to be filled. The THAT-complements are complete

sentences.

Other arcs leaving state NP/NP allow for such
constructions as a colon following a noun-piirase and a comma
either indicating the beginning of a conjoined sequence of
noun-phrases, or introducing a transitive adverb
(ESPECIALLY, PARTICULARLY) and its following noun-phrase.

The smanotated listing describes these arcs in detail.

3.42

Chapter 4

SEMANTIC INTERPRETATION STRATEGIES

4,1 Motivation

In Section 2.3, we presented an outline of the operation
of the semantic interpretation component. In this Chapter, we
will discuss the particular semantic strategies embodied in the
semantic rules and the way in which they produce semantic

interpretations from the syntactic structures being interpreted.

The semantic rules used in the svstem fall into two
classes. One class deals with grammatical constructions which
have real meaning to the system (determiners, verbal constructions
such as "give me", "I need”, etc., and noun constructions such as
"analyses", "average...", "ratios", "references", etc.). The
other class deals with constructions whose meaning is not apparent
to the system, but which are instead to be interpreted as subject
indicators or other restrictions on the references to be retrieved.
The system generally attempts to interpret a sentence or request
in terms of its semantic rules for specific constructions, bhut if
it fails to find an interpretation of the sentence in terms of the
constructions which it knows, it types a comment to that effect
and attempts to interpret the reauest as a Boolean combination of
terms for retrieval from the keyphrase tahle. The set of semantic
rules which perform this Boolean interpretation are called
topicrules and may either be invoked explicitly by constructions
such as "references on", "bibliography of", etc. or it may be

invoked by default when a request fails to interpret normally.

4,2 The General Semantic Framework

The general semantic format cf the LSNLIS system is
essentially that described in Woods (1967, 1968)., That is, the
retrieval component of the system consists of a set of primitive
commands, functions, and predicates which may be combined and
quantified to produce semantic interpretations which are essent-
ially retrieval programs for computing the truth values of pro-
positions or for carrying out commands. The task of the semantic
interpreter is to translate the parse tree of the sentence into
an expression in this formal query language which can then be

executed to retricve or compute the answer.

4.3 Semantic Representation

The fundamental components of the retricval component are
the primitive functions, commands, and predicates which the machine
understands. ‘These include specific retrieval functions for con-
cepts such as "average", "ratio", "analysis", "mineral", "isotope",
etc. and general functions such as the quantificr function FOR
and the list enumeration function SEQ. %he typical retrieval
operation is based on the quantification of propositions and
commands l.y aquantifiers of the form:

(FOR QUANT X / CLASS : P(X) ; Q(X)) where QUANT is a quantifier
(EACH, EVERY, SOME, etc.), X is the variable of quantification,
CLASS is the class of objects over which the variable is to range,
P(X) is a restriction on this range (i.e. the only objects in
CLASS which are of interest are those for which P(X) is true), and

Q(X) is the proposition or command being guantified. The class of

objects 1is specified Ly a special enumeration function (such as
DATALINE) for enumerating the objects in the class (e.g. by search-
ing the table) or by the function SLQ which takes a list as an
argument and enumerates the clements of that list. Typically,

Q(X) will be the command (PRINTOUT X) whicnh prints out a represen-

tation of the object X on the teletype. For example, the expression

(FOR EVERY X1 / (SEQ PHASES) : T ; (PRINTOUT Xl)) is a retrieval
program which will print out the names of all of the members of
the list PHASES (the list of all the namcs of phases of samples
which are recorded in the system's data base). This framework
for semantic representation provides a powerful formal language

for the expression of requests for the retrieval component.

4.4 Interpreting Sentence Nodes

The interpretation of a sentence node occurs in two phases
distinguished by the use of different values for TYPEFLAG. The
first phase, with TYPEFLAG NIL determines whether there are any
governing operators or commands such as NOT, TEST, etc., which
govern the sentence. It is essentially a preprocessing phase
prior to the actual examination of the sentence itself and
consists in matching rules from the global list PRERULES (which
is independent of the particular verb which governs the sentence).
Of these rules, S:AND and S:0R interpret conjoined sentences;
S:DCL deals with the interpretation of declarative sentences;
S:IMP interprets imperative sentences; and S:WHQ and S:YES/NO
deal with questions (the former with questions containing
question words such as "which" or "what" and the latter with

simple yes/no questions). S:NPU deals with noun-phrase utterances

(i.e. sentences which consist only of a single noun-phrase with
no verb). Other prerules interpret negative sentences and different
syntactic formats.

All of the PRERULES (with the exception of S:NPU and a few
others) specify the subsequent interpretation of the same node
with the TYPEFLAG SRULES (the exceptions call for the interpretation
of specific lower nodes). This second call for the interpretation

of the node begins the second phase of processing. In this case,

the rules to be tried are taken from the property list (i.e.
dictionary entry) of the head of the sentence (i.e. the verb) under
the property SRULES. Alternatively, if the verb does not itself
have any SRULES, but has as one of its semantic markers a word
which has SRULES on its property list, then the rules to be matched
will be taken from the list associated with the marker. For
example, the rule S:GIVE which interprets sentences of the form
"give me information on ..." is used for the interpretation of many
words which are synonyms of "give" in this context. This is indi-
cated by putting the semantic marker GIVE in their dictionary
entries, and therefore enabling them to use the SRULES from the

dictionary entry for the word "give".

4.5 Interpreting noun-phrases

The semantic rules which interpret sentences generally
require the intcrpretation of one or more noun phrases as
subconstituents of their interpretation. The rule S:NPU for
example, requires only the interpetation of its single constituent
noun phrase. Like the interpretation of sentences, the interpre-
tation of noun-phrases occurs in several phases. The first of
these, with NIL TYPEFLAG interprets the dcterminer structure of
the noun phrase to determine what type of quantifier is to govern
it. This phase consists of matching rules from the global list
DRULES. These rules examine the determiner and number of the noun
phrase and assign a basic quantifier structure. They also call
for the interpretations of the same node in two different modes--
NRULES and RRULES--for the other two phases. NRULES and RRULES
both are taken from the property list of the head of the noun-
phrase (i.e. the noun) or from the property lists of words which
occur in the list of markers for the head noun. NRULES interpret
the noun of the phrase and any arguments which it may require
(i.e. if it is a function); RRULES interpret any further restrictive

modifiers which may occur in the noun phrase. Modifiers which do

not match any RRULES are ignored, and relative clauses are handled
by a special mechanism which tags the relative pronoun of the
relative clause with the variable of guantification and calls for

its interpretation as a sentence.

4.6 Interpreting Topics

The above description of the interpretation of noun phrases
applies only to noun phrases which have direct and understandable
meaning to the system (e.g. "documents on ..." "analyses of ...",
etc.) Other noun phrases consist of topic descriptions and are
treated in an entirely different manner by the system., In the
latter case, a list TOPICRULES specifies a global list of rules
for translating syntax trees into Boolean combinations of key
phrases. These rules are grouped on TOPICRULES into AND and OR
groups in the way in which any resulting matches are to be combined.
Each topic rule corresponds to a particular type of key phrase which
may be present in a syntactic construction, and specifies in its
left-hand side the proper context and structure for the extraction

of that key phrase.

The list of TOPICRULES is used to interpret a noun phrase
instead of the usual sequence of DRULIS, NRULES, and RRULES when-
ever the call to interpret the noun phrase is made with TYPEFLAG
TOPIC instead of TYPEFLAG NIL. Semantic rules of the ordinary
type are used to invoke this special type of interpretation when-
ever they locate a context which is definitely a topic. For
example, the rule R:DOC-ON interprets restrictions on a noun which
is semantically marked DOCUMENT that begin with the preposition
"on". It interprets such constructions as "data on X" by calling
for the interpretation of X with TYPEFLAG TOPIC and constructing
an instance of the ABOUT predicate indicating that the documents

in questions are about the topic X.

Since the data base of the system is quite limited in
scope, it is quite likely that the user may ask the system for
something which it does not understand. 1In this case, the
system will attempt to interpret the unknown thing as a topic
for which references are required. For this purpose, noun

phrases in the environment of a "give me ..." sentence or a noun-
phrase utterance are interpreted with a TYPEFLAG REFS? which
first trys to interpret the noun phrase in the normal wav, and
failing that, produces a call to the rule REFIDRENCES which prints

a comment to the user and interprets the noun phrase as a topic.

4.7 An Example

As an example of the semantic interpretation procedure,
consider the "sentence" (actually a noun-phrase utterance):
(ANALYSES OF SAMPLL £10046 FOR HYDROGLIY)
This sentence produces the following tree structure when processed

by the parser:

S NPU
NP DET NIL
N ANALYSIS
NU PL
PP PREP OF
NP DET NIL
NPR SHITPLI
$10046
jo1e] NIL
PP PRI.P FCR
NP DET NIL
N HYDROGLEN
LU SG

The function INTERP does the interpretation. It first
attempts an interpretation of the whole sentence, S. Using the
list of rules, PRERULLS, it finds that the sentence is a noun
phrase utterance (NPU) and should receive the interpretation
attached to its main noun phrase (NP). At this point, the right-
hand side of the rule (PRED (PRINTOUT (# 1 1 REFS?))) indicates
that the interpretation is a predicate (which may later be
quantified) governing the command PRINTOUT. It indicates that
the things to be printed out are to be determined by interpreting
the noun-phrase (# 1 1) with the typeflag REFS? (i.e. the noun
phrase may be either a topic description or a noun phrase whose .
head is semantically interpretable. The function PRED will be exe-
cuted after the substitution of the interpretation on the noun-phrase
has heen rade in the right-hand side, and it will grab anv quanci-

fiers which have been produced by the constituent interpretations.

The interpreter now begins the interpretation of the noun
phrase using the two rules REFRULE? and REFRULE (determined by
the TYPEFLAG REFS?). The first attempts the interpretation in the
normal mode beginning with the global list DRULES. Since the noun
phrase does have an interpretable head ("analysis") this inter-

pretation will succeed, and the rule REFRULE will never be tried.

As we mentioned, the DRULES are used to interpret the
determiner and number of the noun phrase and determine the type
of quantifier to be produced. This includes the case of no deter-
miner (determiner NIL). In this case, the special generic quantifier
GEN is produced, and placed in a buffer string for the function
PRED to grab. A variable of quantification (X13) is assigned to the
noun phrase, and the interpreter is called with the TYPLFLAG NRULLS

to interpret the noun.

4.7.1 Interpreting the loun Phrase

In the dictionary, the word "analysis" contains the semantic
marker ANAIYSIS, and under the property NRULES it contains the list
(N:ANALYSIS N:MODAL-ANALYSIS). The two NRULES specify the inter-
pretations of the two types of analyses which the system recog-
nizes--the chemical analysis of some element in some phase of a
sample, and the modal analysis of some mineral in a sample. The
first rule applies when there is no adjective "modal" present in
the noun phrase, and the second applies when there is such an
adjective. The rule which will be applicable in this case is thus

N:ANALYSIS. This rule is shown in figure 4-1.

The rule N:ANALYSIS specifies constituents which must be
present (or absent) in a noun phrase in order for the rule to
match, and specifies the enumeration function winich is to be used
for the quantification if the rule match is successful. First, it
specifies that the noun of tlie noun phrasc bLe a member (MLM) of
the semantic class ANALYSIS (i.e. that its dictionary entry contain
the semantic marker ANZLYSIS). This is true not only of the word
"analyvsis" itself, but also of otner words which can behave as
synonyms for "analvsis" in this context (such as "concentration",
"composition", etc) Secondly, the rule specifies that there must
be no modifier "modal" (in this case, the rule N:MODAL-ANALYSIS
would applv). The next three components of the pattern part of
the rule specify the "arguments" of the head noun -- the sample,
phase, and constituent of interest. These may be specified
syntactically several ways -- either as an adjectival modifier,

a prepositional modifier, or by default. Thus, the constituent
of an analysis (the fifth component of the pattern) can be
specified by a prepositional phrase whose object is either an

element, an oxide, or an isotope; by an adjectival modifier

[N:ANALYSIS

(NP,N /MEM 1 ANALYSIS))

(NOT (NP,ADJ (EQU 1 MODAL)))

(OR (NP,PP (MEM 2 (SAMPLE ROCK)))

(NP,PP.PP (MEM 2 (SAMPLE ROCK)))
(NP.PP,PP,PP (MEM 2 (SAMPLE ROCK)))
(DEFAULT (2 NP (DET ALL)

(N SAMPLE)

(NU pPL)Y)))

(OR (NP,PP (MTM 2 (PHASE MINERAL)))

{NP,PP,PP (MLEM 2 (PHASE MINERAL)))
(NP.PP.PP,PP (MEM 2 (PHASE MINERAL)))
(NP,ADJ#2 (MEM 2 (PHASE MINERAL)))
(NP,PP.ADJ-N (AND (OR (EQU 2 FINE)
(EQU 2 COARSE))
(MEM 1 DUST)))
(DFFAULT (2 NP (KPR OVERALL))))

(OR (NP,.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP,PP,.PP (MTM 2 (ELEMENT OXIDE ISOTOPE}}))
(NP,PP.PP,PP (MEM 2 (ELEMENT OXIDE ISOTOFE)))
(NP,ADJI#2 (MEM 2 (ELEMENT OXIDE ISOTOPE)})
{DEFAJLT (2 NP (DET EVERY)

{ADJ MARJOR)
(N ELEMEND)
(MU £GY)))
(OR (NP, ADJ (=T0QU 1 CHEMICAL))
(DFFAULT (1 NPR N1L)))
-> {(SSUNTIOHF (DATALINE (WHQFILE (# 3 2 SSET))
(# 4 2) (# 5 2 SSFTY)) 1

rirmure 4-1 The NRULLE N:AMNALYSIS

(# 3 2 SSET)

which 1s one of the above three types; or by default in which
case quantification over the major clements is assumed. These
alternatives are represented in the semantic rule by a group
of templates OR'ed together with the default option at the end
of the OR. The default option applies if and only if none of

the other components of the OR are satisfied.

The last component of the pattern specifies the optional
presence of the adjective "chemical®. This is done so that when
the user requests "chemical analyses", the Semantic Interpreter
does not apologise for being unable to interpret "chemical" as
a modifier of "analysis". (See the section on User Aids, Chapter 1,
for a discussion of the interpreter's reaction to things it cannot
"understand".) In the current data base, all analyses are basically
chemical ones, so "chemical" does not add anything to the inter-
pretation of "analyvsis". However, the Semantic Interpreter should
know the difference between harmless optional modifiers and ones

which are important.

4.7.1.1 Prepositional Arguments

It would be nice if the parser provided a syntax tree in which
the various prepositional argumcnts of a noun phrase were attached
directly to the noun phrase where they make sense semantically,
and we have experimented elsewhure with a rudimentary facility for
using the information in tlie semantic rules to guide the parser
in the placement of prepositional modifiers. In the present
systerm, however, we have taken the opposite tack and provided
scmantic rules which can locate tlie nccessarv nrepositional argu-
ments even when the parser has placed them in the wrong place.
Thus, the templates which match prepositional modifiers in the
rule N:ANALYSIS make use of the tree fragments UP.PP,NP.PP.PP, and
NP.P?.7P, "7, which can locate a nrepositional nhrase cne, two, or

three levels deep in a noun phrase.

Note that the templates which check prepositional phrases
make no checks on the preposition itself. The rule was originally
written this way as an expedient since there are many possible
combinations of prepositions whicli may occur in this context ana
their enumeration was tedious. However, the rule in this form
has been very successful--we have encountered no cases in which a
sentence was falsely interpreted because of this failure to check
the prepositions, and if no such cases arise, we will probably
leave the rule in its present form (since it is faster without the

additional checks).

4.7.1.2 The Right-Hand Side of the Rule

The right-hand side of the rule specifies the enumeration
function which is to be used to enumerate the analyses to which
the request refers. This will be a call to the data base function
DATALINE which takes arguments specifying the sample, phase, and
constituent of interest and enumerates the lines of the table
which correspond to the values of these arguments. The first
argument to DATALINE is a call to the function WHQFILE with the
sample as its argument. WHQFILE returns the name of the file
on which the analyses of the sample are located. This is so that
DATALINE will know which file to search for them. The rule
specifies the interpretation of node (# 3 2), with tvpeflag SSET,
as being the sample required. The final three arguments are
the sample, phase and constituent, respectively, and these
positions are to be filled respectively with the interpretations
of the nodes (# 3 2), (# 4 2) and (# 5 2). The typeflag SSET
with which the sample and constituent are to be interpreted
specifies the nodes to be interpreted as sets, if possible, and
not as quantified variables. Nodes can be interpreted as sets
if they are plural ("the samples"; "all the halogens") or
determined by "every" ("every type A rock"). Otherwise, if any
of these argument positions receive direct proper noun interpre-
tations, then these interpretations are inserted directly in
place of the expressions (# 3 2) etc., while if any of them are
quantified bv "each" ("each rare earth element"), their inter-
pretation will be the variable of quantification and the governing
quantifier will be passed up the tree to the sentence which

dominates the noun phrase.
4,11

4.7.1.3 Completing the NRULE Interpretation

In the particular case at hand, the third template will
match "of sample S10046", the second will default to "overall",
and third will match "for lydrogen". Thus, in order to complete
the interpretation of the noae, the interpretations of the nodes

(# 3 2) (sample S10046), (# 4 2) (overall), and (% 5 2) (Hydrogen)

will be called for, producing the interpretations (NPR* X1 /
(QUOTE S10046)), (QUOTE OVERALL), and (NPR* X2 / (QUOTE H)),
respectively. No quantifiers are produced by any of these sub-
interpretations. The result of the rule N:ANALYSIS is thus the
enumeration function:
(DATALINE (WHQFILE (NPR* X1 / (QUOTE $10046))) (NPR* X1 /
(QUOTE $10046)) (QUOTE OVERALL) (NPR* X2 / (QUOTE H)))

At this point, we return to the DRULE which called for the
HRULE interpretation of this node and INTERP begins another

interpretation of the same noue with typeflag RRULES to pick up
any possible modifiers. It again consults the property list of

the head noun ("analvsis") and finds the RRULES, R:ANALYSIS-RLEF
and R:ANALYSIS-TAG. These rules allow for the optional restric-
tion of "analysis" by some tag or reference, e.d. "Analvses of
hydrogen in D70-246 with tag 2". In addition to these RRULLS,
RULES sends the function MATCHER the four universal RRULES, R:REL,
R:QREL, R:ADJ and R:PP to match against the node. These rules

see if there are any relative clauses, special relative clauses of
type QREL (see section 3.2.1.4, where these clauses are discussed),
unused adjectives or uninterpretted prepositional phrases. The
latter two rules are used to check that aill adjectives and PP's

on the node have been interpreted or have contributed to the inter-
pretation of the node. If not, they inform the user of what the
Semantic Interpreter has ignored and ask him what to do about it.
The former two rules call for the interpretation of any relative
clauses on the ncde, but follow the latter two rules if any of

them are uninterpretable.

In this case, none of the RRULES apply and the result of
the interpretation is the vacuous restriction T. Control again

returns to the DRULE looking at "analyses ..." and the quantifier:

(FOR GEN X13 / (DATALINE (WHQFILE (NPR* X1 / (QUOTE S10046)))
(NPR* X1 / (QUOTE S10046)) (QUOTE OVERALL) (NPR* X2 / (QUOTE H)))
: T ; DLT)

is constructed. This quartifier is returned to the higher
sentence (the P utterance) which called for the interpretation
of this node, and the semantic interpretation X13 is attached

to the node.

4.7.2 Completing the Interpretation of the Noun-Phrase Utterance

Recall that the semantic rule which interpreted the top
level noun-phrase utterance was left pending with the right-hand
side (PRED (PRINTOUT (¢# 1 1 REFS?))). The interpretation that
is returned by the call for the interpretation of (# 1 1 REFS?)
is now X13, and the quantifier governing this variable has been
placed in the quantifier string QUANTS which is being passed up

along the tree. After the substitution, the resulting expression

(PRED (PRINTOUT X13)) is executed and results in the 'grabbing"
of the quantifier(s) in the string QUANTS to produce the resulting
interpretation:
(FOR GEN X13 / (DATALINL (WHQFILE (NPR* X1 / (QUOTE S10046)))

(NPR* X1 / (QUOTE S10046))

(QUOTE OVLRALL)

(NPR* X2 / (QUOTE H))) : T ; (PRINTOUT x13))
This expression is a retrieval program which will range over the
set of table lines specified bv the call to DATALINE, binding X13
to each in turn, and executing the expression (PRINTOUT X13) for
each such line. The result of the execution will be a printout

of the lines reporting overall hyvdrogen analyses of sample Slut4é6.

4.13

4.8 Variations on the Example

The interpretation of sentences such as "give me all
analyses of sample S10046 for Hydrogen" are interpreted in exactly
the same manner as the preceding example except that instead of
the rule for noun phrase utterances, a rule £:GIVE (for various
paraphrases of "give me ...") will apply to produce the right-hand
side (FPRED (PRINTOUT (# 2 1 RCIFS?))). The interpretation
o’ plirases such as "overall llydrogen analyses of S10046", "Hydrogen
analyses of 510046, "analyses of Hydrogen in S$10046", etc. will
differ only in which components of the OR'ed templates of N:ANALYSIS
are chosen. The interpretations of phrases such as "analyses of
major elements in S10046" will differ only in that additional
quantifiers will be passed up bv the interpretation of the embedded

guantified noun phrases.

4,9 Anaphoric Reference

LSNLIS has been designed as a conversational system. Thus,
it must be prepared to deal with such a common conversational
device as anaphoric reference. Several examples of anaphoric
reference are shown in the following sets of requests.

(1) a. Give me all analyses of Sample 10046 for hydrogen.

b. Give me them for oxygen.
(2) a. Do any breccias contain aluminum?
b. Which are those breccias?

(3) a. Which coarse-grained rocks have been analysed for
cobalt?

b. Which ones have been analysed for strontium?
c. Which ones have been analysed for strontium too?
(4) a. How much TiO2 is in type B rocks?

b. How much silicon is in them?

The problem is in finding the referent of each anaphoric element:
e.g. "them" in (1) and (4), "those breccias" in (2) and "ones"
in (3).

The resolution of anaphoric reference is done in LSNLIS

4.14

by the Semantic Interpreter, and not by the Parser. Thus, we
will find pronouns like "one" and "they" and determiners like
"those" and "that" in the parse tree given the semantic inter-
preter. Whether it would be more efficient to let the Parser
resolve anaphoric reference itself, or let the two phases share
the burden is not yet clear, but we do not claim that the
strategies we use now should be in any way final. Much remains
to be done in this area.

Our main device for dealing with anaphoric reference makes
use of the "variables of quantification”" mentioned earlier in the
chapter. During interpretation, every noun phrase that the
Semantic Interpreter attempts to interpret becomes associated
with a variable of quantification. These variables are very
much like Chomsky's referential indices. After the interpreta-
tion of the request is completed, each variable also becomes
associated with the interpretation of its noun phrase, as well as
its syntactic structure. This latter association is done by the
function SCOPEFINDER, called by INTERP. The above information
is stored on the property list of each variable, under the pro-
perties NODE and INTENSION, respectivelv. For example, the
following shows the property list of variable X13, at the comple-
tion of our example request:

X13

NCDE {NF (DET NIL)
(N ANALYSIS)
(NU PL)
(PP (PREP CF)
(NP (DET NIL)
(NPR SAVPLE
1004¢)
(NU sG)))
(PP (PREP FOR)
(NP (DET NIL)
(N HYDRCGEN)
(NU 8G)))) .
INTENSICN (GEN (DATALINE (WHQFILE (iPR¥* Xi /
(LUCTE Str0C4ae)))
(NPR* X1 / (QUOIE S10040))
(QUOTE OVERALL)
(NPR¥* X2 / (QUCTE H})) 1)

4,15

Also at the completion of a request, the function SPROC adds
the variables used in its interpretation to the top of the list
ANTECEDANTS, for use in resolving future anaphoric reference.

We distinguish two types of anaphoric reference in LSNLIS,
partial anaphoric reference and complete anaphoric reference.
(lb.) is an example of partial anaphoric reference in that "them"
refers to only part of the previous noun phrase "analyses of
Sample 10046 for hydrogen", that is, to "analyses of Sample 10046".
The prepositional phrase "for oxygen" replaces "for hydrogen" in

the original request.

The remaining examples illustrate complete anaphoric refer-
ence of two types: anaphoric reference to the question set (i.e.
the phrase used in the request) and to the answer set (i.e. the
set of answers to the request). Example (3) illustrates these two
tvpes best. "Ones" in (3b.) refers to the question set in (3a.)
“"coarse-grained rocks", while "ones" in (3c.) refers to the answer
set in (3a.), "coarse-grained rocks which have been analysed for
cobalt". We take the word "too" in (3c.) as signalling this dif-

ference.

We shall give in what follows, a brief sketch of how the
Semantic Interpreter treats each tvpe of anaphoric reference,

then go on to discuss its limitations in this area.

There are two semantic rules for interpreting anaphoric pro-
nouns and determiners, D:ANAPHORA and D:SEMI-ANAPHOR. The former
matches anaphoric pronouns and determiners which do not have any
prepositional phrase or relative clause modifiers, while the latter
matches those that do. The former represents complete anaphoric
reference, while the latter, partial anaphoric reference. There are
also two semantic rules for interpreting the pronoun "one", which
can be influenced by the words "too", "also", and "in addition"

in selecting the referent,

Consider example (lb) first. The right-hand side of the rule
S:GIVE applies to this request and calls for the interpretation of
the direct object of "give in this case, "them in oxygen". We
proceed to interpret its determiner structure, and since anaphoric
pronouns are matched in the same cycle as determiners, we find that
the rule D:SEMI-ANAPHOR matches the node. This rule calls for the
application of the function SEMIANAPHOR to the entire node, as is.
What SEMIANAPHOR does is to search through the list of antecedant
noun phrases for one which has a syntactic and semantic structure
parallel to the given node. In this case, it looks for one with
a dependent prepositional phrase whose preposition is "of" and whose
head noun has the same markers as "oxygen", that is, (ELEMENT).

The noun phrase "analyses of sample 10046 for hydrogen" meets this
description, SEMIANAPHOR then replaces the prepositional phrase
"for hydrogen" with that "for oxygen", and returns, as the inter-
pretation of "them for oxygen", the interpretation of "analyses of

sample 10046 for oxygen".

SEMIANAPHOR, as it now stands, is only a first approximation
to the problem of resolving partial anaphoric reference. To begin
with, it is only applicable to anaphora with a single prepositional
phrase parallel to one belonging to its antecedant, as in the example
above. This also requires having correct modifier placement, a
stage which we have not yet reached. Follow-up reoguests to (la)
which would be beyond the system's current capacitv are ones like:

(5) a. Give me the oxygen ones.
b. How about them for oxvgen.

c. Give me those that have becn done for oxvgen.

The following example shows the parsing and interpretation of

the two requests in example (1).

SENTENCE:
(GIVE ME ALL ANALYSES FOR HYDROGEN IN SAMPLE 102u6)
PTIMING:
7262 CONSES
be796 SECONDS
PARSINGS:
S IMP
NP PRO YOU
AUX TNS PRESENT
VP V GIVE
NP DET ALL
PRO ONES
NU SG/PL
PP PREP OF
NP DET NIL
N ANALYSIS
NU PL
PP PREP FOR
NP DET NIL
N HYDROGEN
NU SG
PP PREP IN
NP DET NIL
NPR SAMPLE
1L@QH6
NU S§G
PP PREP TO
NP PRO I
NU NIL

ITIMING:
22879 CONSES
A.BP5 SECONDS
INTERPRETATIONS:
(DO (FOR EVERY X14 / (DATALINE (WHQFILE (NPR= X15 / (QUOCTE S122461)))
(NPR* X1& ;s (QUOTE S10246)) (NPR* X16 / (QUOTE OVERALL)) (NPRs= X17
/ (QUOTE H)Y)) ¢ T ; (PRINTOUT X14)))

+L

4.18

SENTENCE:
(GIVE ME THZM FOR OXYGEN)
PTIMING:
664 CONSES
3.61 SECONDS
PARSINGS:
5 IMP
NP PRO YOU
AUX TNS PRESENT
VP V GIVE
NP PRO THEY
NU PL
PP PREP FOR
NP DET NIL
N OXYGEN
NU 86
PP PREP TO
NP PRO I
NU NIL

ITIMING:

224U CONSES

9,345 SECCNDS

INTERPRETATIONS:

(DO (FOR GEN X19 / (DATALINE (WHQFILE (NPRe* X20 / (QUOTE S18046)))
(NPR* X27 / (QUOTF S1PQ@u6)) (NPR* X1 / (QUOTE OVERALL)) (NPRe X2 /
(QUOTE 0))) ¢ T 3 (PRINTOQUT X19)))

Examples (2) and (4) illustrate basic complete anaphoric
reference. The semantic rule which handles this type of anaphoric
reference 1s D:ANAPHOR., We consider the analysis of (2b) first.

(Both reguests in example (2) can be found as examples in Appendix G.)

Request (2b) is a "What(Which) is X?" question, which is
interpreted by rule SS30. This rule calls for the interpretation
of X, in this case "those breccias”. The rule D:ANAPHOR recognizes
that "those" is anaphoric, and notes that the noun phrase is not
modified by either a prepositional phrase or relative clause modi-
fier, in which case, the rule D:SEMI-ANAPHOR would apply. The
right hand side of D:ANAPHOR is a sequence of instructions to re-
solve the anaphorism, The first function called, ANTECEDANT, finds
the variable associated with the antecedant of "those breccias”,
while the calls to ANTLEQUANT construct the quantifier to be re-
turned as its interpretation. (Since the antecedant of "those
breccias" may be within the scope of some other quantifiers

(SCOPEVARS), they must also be included in the interpretation of

4,19

"those breccias".) The primary strategy used here in finding the
antecedant of "those breccias" is to look for one whose head noun

is also "breccia".

The antecedant of "those breccias" in example (2b) is "breccias
which contain aluminum", It is a general observation captured by
the Semantic Interpreter that a questioned existentially quanti-
fied sentence like (2a) implies an intensicnal noun phrase con-
taining among its restrictions those of the main verb of the re-
quest. Thus the interpretation of (2a) produces an intensional
noun phrase equivalent to "breccias which contain aluminum?” and
it is this intensional object which is the antecedant of "those"

breccias.

D:ANAPHOR is also used to resolve the anaphoric reference in
example (4b), but the strategy used by ANTECEDANT to find the ante-
cedant of "them" is slightly different. At the sentence level, the
rule S:BE-IN2 would match if the antecedant of "them" had the seman-
tic markers (SAMPLE). (The constitutents of S:BE~IN2 are a subject
noun phrase which is marked either ELEMENT, OXIDE, ISOTOPE, PHASE
or MINERAL, a verb which is either BL, OCCUR or EXIST, a preposi-
tional phrase whose head is marked SAMPLL, and another optional
prepositional phrase whose head is marked either PHASE or MINERAL.)
When the template (S.PP (AND (EQU 1 IN) (HEM 2 (SAMPLE))) 1is matched
against the top S node, MEM calls the function ANTECEDANT to find
out if there is a possible antecedant for "them" which fits this
description, i.e. (MEM 2 (SAMPLE)). ANTECEDANT finds "“type b
rocks" as a possible antecedant noun phrase for "them", which also
satisfies the requirement that its head have markers SAMPLE. ANTE-
CEDANT also records on TAGLIST that the antecedant of "them" is
X3, the variable associated with the noun phrase "type b rocks".
(Where this strategy differs from the one used for finding the
antecedant of "those breccias" is in usiny semantic markers, rather
than a specific word like "breccias" as a recquirement on the head
of the antecedant.) When S:BE-IN2 later calls for the interpretation
of the phrase "in them", D:ANAPHOR calls ANTECEDANT which picks off
the TAGLIST the antecedant for "them" it found previously.

ANTEQUANT then constructs the proper quantifier for it. The following

4.20

example illustrates the parsing and interpretation of the two

requests in example (4).

SENTENCE:
(HOW MUCH TITANIUM IS IN TYPE B ROCKS)
PTIMING:
1315 CONSES
7.655 SECCNDS
PARSINGS:
S Q
NP DET POSTART COMP ADV HOW
MUCH
N TITANIUM
NU S6
AUX TNS PRESENT
VP V BE
PP PREP IN
NP DET NIL
ADJ TYPE/B
N ROCK
NU PL

ITIMING:

‘OB CNONSES

44,595 SECTNDS

INTERPRETAZTIONS

(FOR GEN X3 / (SEQ TYPEBS) : T ; (CONTAIN' X3 (NPR* X4 YOTE T
(QUOTE NIL) (HOW))Y) / (Q 102))

SENTENCE:
(HOW MUCH SILICON TS IN THEM)
PTIMING:
"374 CONSES
He282 SECTNDS
PARSINGS:
g0
NP DET PCSTART COMP ADV HOW
MUCH
N STLICON
KU SG
AUX TNS PRESENT
VP V BE
PP PREP IN
NP PREO THEY
N PL

ITIMING:

269 CONSES

He.227 SECTNDS

INTERPRETATIONS:

(FPOR GFY X3 / (SFQ TYPEBS) : T ; (CONTAIN' X3 (NFR+* X6 / (QUOTE SIn2))
‘QUOTE NIL) (HOA#))Y)

Example (3) illustrates anaphoric reference with the word
"ones". "One" and "ones" are peculiar anaphoric pronouns in that
they are influenced by the words "too", "also", and "in-addition"
in establishing their antecedants. "Them" in examples (1) and (4),
on the other hand, is not so influenced. The antecedant of "them"
does not change, whether one says "Give me them for oxygen." or
"Give me them for oxygen too.". As mentioned previously, when
"too" and similar words occur with "ones" or "one", the pronoun's
antecedant is the answer set, while without "too", its antecedant
is the question set. "One" and "ones" are also peculiar pronouns
in that they can occur with determiners, which must also be con-
sidered in forming their interpretations: "“which ones" has a dif-
ferent interpretation from "the ones”.

A noun phrase whose head is the anaphoric pronoun "one" or
"ones" is interpreted by the normal DRULES to find its determiner
structure. The rules N:ONE and R:ONE are then used to interpret
the class of the noun phrase and its restrictions. (It should be
pointed out here that "one" and "ones" can also be used in a non-
anaphoric, partitive sense, e.g. "Which one of the hoys", and in
this case, the rules N:ONEOF and R:OLEOF are used to get the class
and restrictions of the noun phrase from the head of the partitive

construction.)

In the interpretation of example (3b), S:NPQ identifies the
parse tree as a cuestioned noun phrase, and calls for its interpre-
tation with typeflag REFS? We try to interpret it normally, and
not as a topic, and in doing so, match the DRULE D:WHQ-PL to the
node. D:WHQ-PL calls for the class and restrictions in making up
its interpretation, and the rules N:ONE and R:ONE are invoked.

The right-hand side of N:ONE calls ANTECEDANT to find the ante-
cedant of "one" and return its associated variable. ANTEQUANT
again brings into the interpretation all the cuantifiers in whose
scope the antecedant of "ones" was located. The function NEWCLASS

then adds into the interpretation the class from the antecedant of

"ones" picked off its INTENSION. The rule R:ONE returns all the
restrictions on the antecedant of "ones" which did not come from
the verb phrase - in this case none. If the word "too" or one
like it were present, all the restrictions on the antecedant,
including those from the verb phrase, would be returned by NEWPX.
The parsing and interpretation of examples (3a) and (3b) is as

follows:

SENTENCE:
(WHICH COARRSE GRAINED IGNEOUS ROCKS HAVE BEEN ANALYZED FOR COBALT)
PTIMING:
884 CONSES
3.647 SECINDS
PARSINGS:
S NPQ
NP DET WHICHQ
ADJ COARSE
ADJ GRAINED
ADJ IGNEOUS
N RoOCYK
NU PL
5 QREL
NP PRO SOMETHING
AUX TNS PRFSENT
PERFECT
VP V ANALYZE
Np DET WHR
N ROCK
NU PL
PP PREP FOR
NP DET HIL
¥ COBALT
NU SG

TTIMING:
964 CONSES
7.834 SECTKDS
INTEKPRETATIONS:
(FOR EVERY X13 / (S®Q TYPEBS) : (AND (DATALINE (WHQFILE X13) X13 OVERALL
(NPR= X 15 s (QUOTE CO))) {(AND T T)) ;3 (PRINTOUT X13}))

tL

SENTENCE:
(WHICH ONES HAVE BEEN ANALYZED FOR STRONTIUM)
PTIMING:
734 CONSES
2.899 SECONDS
PARSINGS:
S NPO
NP DET WHICHQ
PRO CNE
NU PL
S QREL
NP PRO SOMETHING
AUX TNS PRESENT
PERFECT
VP V ANALYZE
NP DET WHR
PRO ONE
NU PL
PP PREP FOR
NP DET WNIL
N STRONTIUM
NU SG

ITIMING:
581 CONSES
7.731 SECTNDS
INTERPRETATIONS:
(FOR EVERY X16 / (SEQ TYPEBS) : (AND (AND T T) (DATALINE (WHQFILE
X16) X16 “VERALL (NPR* X18 / (QUOTE SR)))) ; (PRINTOUT X16))

Our present anaphorism facility is still very rudimentary
and contains a number of deficiencies which will have to be recti-
fied before it can be extended. First, bhecause the intension of a
variable and its associated noun phrase is not computed until after
the interpretation of the entire reguest, intra-sentence anaphorism
like:

(6) Is the average titanium concentration in S$10046
larger than that in S100472

cannot be interpreted correctly, if at all.

Secondly, we do not save enough of the things in the ev-
vironment which can serve as antecedants. Consider for example the
interchange:

(7) User: Which samnples contain magnesium in glass?

LSNLIS: ==510047

USER: Does it contain zirconium too?

To resolve the anaphorism in the above exchange, we should save the
information that S10047 is available as an antecedant for the second

question. The current system does not do this., It resolves the

anaphorism in a make-shift manner by not insisting on number agree-
ment between anaphorism and antecedant. It takes "samples which
contain magnesium in glass as the antecedant for "it", and pro-
duces an interpretation which tests whether each sample which
contains the above also contains zirconium. That the retrieval
component has already found that S10047 is the only sample meeting
the above description is ignored by the Semantic Interpreter.

Both of the above problems require the provision of an
appropriately varying dynamic environment of possible candidates
for antecedants which extends not only between sentences, but
within the processing of a single sentence, and includes entities
mentioned by both participants in the dialog.

In addition to the above limitations of the current system's
"possible antecedant environment", there are many other aspects
of the anaphoric reference problem which we have not even begun to
investigate. For example, our attempts at partial anaphoric ref-
erence have just begun to scratch the surface; much more work is
required in this area. Other aspects of anaphorism that have not
been incorporated in the system, even on a limited scale, include
treatment of words like "other" as anaphoric expressions. For
example, the system should be able to find the referent of
phrases such as "other rocks" in the following exchanges:

(8) Does S10017 contain magnesium in glass?
Do other rocks contain it?

(9) Which basalts contain aluminum?
Which other rocks contain it?

"Other rocks" in (8) refers to ones other than S10017. "Other
rocks" in (9) refers to ones other than the basalts (tvpe A

rocks) .

Anaphorism is a very interesting and subtle problem,
but a crucial one to conveient man-machine communication. More

research in this area is required.

Chapter 5

CONCLUSION

5.1 Goals

The long range goals of the LSNLIS project are to develop a
system for man-machine communication in natural English which is
so natural and convenient that the task of formulating requests
for the machine need not distract the scientist from his tasks of
hypothesis formation and testing. We would like to be able to
understand the scientist's requests in whatever form they occur
to him, without requiring him to rephrase them into a constrained
and artificial language. Although English is not necessarily the
only means of achieving this degree of naturalness, we feel that
any artificial language which meets the above criteria will have
to share many features of natural language such as vagueness,
ambiguity, etc. and that it is more fruitful to try to deal with
these problems in English than to try to devise an artificial
language which is both as easy for people to think in as English,

and at the same time more easy to process by machine.

In addition to the long range goal of making such a system
possible in the distant future, we have the additional goal of
making some more limited version of the goal available in the next
few years. That is, as our knowledge of the linguistic processes
involved in the understanding of natural language increases, it
should be possible to harness this knowledge into a system which,
although more limited than the ultimate goal, will nevertheless
perform useful work. We believe that the state of the art in
natural language processing is at the point where such applications
are possible, and the current LSNLIS prototype is an attempt to

carry out such an application.

5.1

5.2 Demonstration of the Prototype

At the Second Annual Lunar Science Conference, held in
Houston, Texas, January 11-13, 1971, the LSNLIS system was
run as a demonstration twice a day for three days. During
this time the lunar geologists attending the conference were
invited to ask questions of the system, Approximately 110
requests were processed, many of which were questions whose
answers would contribute to the work of the requestor and not
merely "toy" questions to see what the system would do. These
requests were limited to those questions asked which in fact
dealt with the data base of the system (many people asked their
gquestions before they could be told what the data base contained)
and were restricted to not contain comparatives (which we did not
handle at the time, the contract being only 6 months old) by
filtering out those requests which contained comparatives. The
requests were freely expressed, however, without any prior
instructians as to phrasing and were typed into the system
exactly as they were asked.

Of 111 requests entered into the system during the three
days, 10% of them failed to perform satisfactorily because of
parsing or semantic interpretation problems, Another 12% failed
due to trivial clerical errors such as dictionary coding errors
which were easily corrected during or immediately after the
demonstration. The remaining 78% of the requests were handled
to our complete satisfaction, and with the correction of the

dictionary coding errors and other trivial errors, 90% of the

5.2

questions expressed fell within the range of English handled by
the system. This performance indicates that our grammar and
semantic interpretation rules, which were based on the information
of a single geologist informant, did indeed capture the essential
details of the way that geologists would refer to the objects

and concepts contained in our data base. Examples of the

requests which were received are:

(GIVE ME THE AVERAGE SM ANALYSIS OF TYPE A ROCKS)

(WHAT IS THE AVERAGE MODAL CONCENTRATION OF ILMENITE
IN TYPE A ROCKS?)

(GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM.)

(GIVE ME ALL K / RB RATIOS FOR BRECCIAS.)

(WHAT BE ANALYSES ARE THERE?)

(GIVE ME OXYGEN ANALYSES IN S10084)

(WHAT SAMPLES CONTAIN CHROMITE?)

(WHAT SAMPLES CONTAIN P205?)

(GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAMPLES)

(GIVE ME THE MODAL ANALYSES OF THOSE SAMPLES FOR ALL PHASES)

(DOES S10046 CONTAIN SPINEL?)

(WHAT PHASES DOES S10046 HAVE?)

(WHAT IS THE AVERAGE CONCENTRATION OF IRON IN ILMENITE)

(GIVE ME REFERENCES ON SECTOR ZONING)

(GIVE ME REFERENCES ON ABYSSAL BASALTS)

(GIVE ME ALL IRON / MAGNESIUM RATIOS IN BRECCIAS)

(GIVE ME ALL SC46 ANALYSES)

(WHAT SOILS CONTAIN OLIV)

(GIVE ME ALL OLIV ANALYSES OF S10085)

(WHAT ARE ALL TUNGSTEN ANALYSES?)

(GIVE ME IRON ANALYSES FOR PLAGIOCLASE IN $10022)

(GIVE ME ALL ZIRCONIUM CONCENTRATIONS IN ILMENITES)

5.2 What We Have Accomplished

The current LSNLIS prototype represents a significant step
in the direction of the goals discussed above. Within the range
of its data base, the system permits a scientist to ask questions
and request computations in his own natural English in much the
same form as they arise to him (or at least in much the same form
that he would use to communicate them to another human being).
This is borne out by the performance of the system during the
demonstration at the Second Annual Lunar Science Conference. The
system answered most of the questions dealing with its data base
which were asked by the investigators during the demonstration.
The effort required to recast the request into a form suitable
for execution in the data base is assumed by the natural English
preprocessor, which translates the English requests into compact
"disposable” programs which are then executed in the data base.
The Englist preprocessor therefore functions as an automatic
programmer which will convert the user's request into a tailor-
made program for computing or retrieving the answer. The English
processor knows the ways in which geologists habitually refer to
the elements, minerals, and measurements contained in its data
base; it knows the specific details of the data base table layouts;
and it knows the correspondence between the two. Thus, for example,
the user need not know that the mineral Olivine is abbreviated
OLIV in the data base, that the concentrations of Titanium are
2 that the class of
rocks referred to variously as "type A", "high alkali", or "fine

recorded in terms of the percentage of TiO

grained crystalline" are encoded as "TYPEAS" in the data base.
These facts are "known" by the natural English processor, and the
user's request is automatically translated from the form in which
he may ask it into the proper form for the data base. Thus an
appreciable portion of the goals of the system are met by the

prototype (at least for the current limited data base).

5.4

5.3 Where We Stand

Although our current system does indeed exhibit many of the
qualities that we have outlined as our goals, we are still far
from achieving the goal as stated. The knowledge that the current
system contains about the use of English and the corresponding
meanings of words and phrases is limited to those English construct-
ions which pertain to the system's data base of chemical analysis
data; (which has a very limited and simple structure). Indeed
this data base was chosen as an initial data base because its
structure was simple and straightforward. In order to incorporate
additional data bases into the system, it will be necessary to
provide the system with information about the ways that the users
will refer to those data bases in English, the vocabulary they will
use, the ways they will use that vocabulary, and the "meanings" of
the words and constructions in terms of the data base tables. For
some tables, (those whose structure is as simple and direct as the
chemical analysis table) this process may be a direct extension
of the current facility and may require only the addition of new
semantic rules for interpreting the new words and constructions.
For other applications, however, this will require much greater
sophistication in both the linguistic processing and the underlying
semantic representations and inference mechanisms. One type of
data which will require considerable advancement in the state of
the art is the representation and use of data which describes
surface and structural features of the samples. This data does not
fit conveniently into a table or a paradigm, and the techniques for
storing it, indexing it, and providing access to it for retrieval
and inference remain to be developed. 1Indeed, it is in the handling
of such information that natural language querying may hold its
greatest promise, but such potential is as yet undeveloped.

5.3.1 Linguistic Fluency and Completeness

There are two scales which can be used to measure the per-

formance of a system such as LSNLIS. We can call tiem completeness

and fluency. A system is logically complete if there is a way to
express any request which it is logically possible to answer from
the data base. The scale, of fluency measures the degree to which
virtually any way of expressing a given request is acceptable.

The two scales of completeness and fluency are somewhat independent
in that it is possible to have a fluent system which will accept
virtually any variations on the requests which it accepts, but which
is nevertheless incomplete. Likewise, a system may be logically
complete but very restricted in its syntax. A natural language
system which is incomplete cannot answer certain gquestions, while
such a system that is not fluent is difficult to use.

5.3.1.1 Fluency of LSNLIS

The LSNLIS prototype is quite fluent in a few specific con- i
structions. It will recognize a large number of variations on
requests of the form "give me all analyses of constituent x in
phase y of sample z." It knows many variations of "give me" and
many different variations on "analysis". However, there are other
requests which (due to limitations in the current grammar) must
be stated in a specific way in order for the grammar to parse them
and there are others which are only understood by the semantic
interpreter when they are stated in certain ways. Most of the
limitations of fluency in the current system are simply due to the
fact that the necessary grammar rules and semantic interpretation
rules have not been put into the system. Continued development
of the grammar and semantic rules will result in continued improve~
ments in fluency, and there is no visible ceiling other than an

economic one to the fluency which can be achieved.

5.3.1.2 Completeness of LSNLIS

The criteria for logical completeness is a level of achieve-
ment that is not generally met by currently available data management
systems using artificial request languages, much less by a system
that recognizes natural language. The request language used for
the retrieval component of LSNLIS fares better than most data
management systems in this respect since it is fundamentally an
extension of the predicate calculus of quantificational logic, but
there are still some extensions which the language requires in order
to fully achieve logical completeness. In addition to this incom-
pleteness of the formal request language, there are limitations in
the logical completeness of the subset of English handled by the
system. This arises largely from the difficulties of parsing
conjunction constructions in English, but there are also problems
in the ambiguity of the scopes of quantifiers. However, the subset
of English which is currently handled is adequate for expressing
most ocuestions which have arisen in practice, and with some further

work on conjunctions should become a very convenient linguage to use.

5.4 Problems for Further Research

5.4,1 Modifier Placement

The semantic rules for the interpretation of the queries in
the current system are written in a fairly powerful format which
allows a great deal of flexibility. However, there are a number
of aspects of the problem which have been surmounted in the proto-
type by brute force, or by ad hoc procedures. OCne of these is the
syntactic ambiguity of modifiers, as in "Give me the average
analysis of breccias for all major elements." 1In this sentence,
there are three syntactic possibilities for the modifier "for all
major elements” (it can modify "breccias", "analysis", or "give"). In
this case, our understanding of the semantics of the situation

tells us that it modifies "analysis", since one can analyze a sample

for an element, and "breccias for all major elements" doesn't

"make sense." Without a similar semantic understanding of the
situation, the computer has no criteria to select which of these
three cases to use. We have in our present system, embodied in

the semantic rule for interpreting analyses, the equivalent of the
knowledge that "one can analyze a sample for an element." Unfortu-
nately, this information is not in a format which makes it conven-
iently available to the parser for use in deciding where to put the
prepositional phrase. The parser in our present system, therefore,
uses a crude consistency check between verbs and the prepositional
modifiers they may take tomake an initial placement of modifiers.
Since this approximation may sometimes be in error or may not
entirely determine modifier placement, the semantic rules have been
made smarter in order to find the modifier "for all major elements"
when interpreting the phrase "average analysis of breccias for all
major elements" even though it appears as a modifier of "breccias"
and not where it should be. This mechanism, while adequate for

the present level of the system, carries inherent difficulties,
since it is now possible for several semantic rules to use the same
modifier for different purposes.

5.4.2 Retrieval Component

Another area of research has to do with the retrieval component
to which the natural language processor interfaces. To take full
advantage of the natural language communication, it is clear at this
point that there are requirements on the facilities which the
retrieval component must possess. For example, the natural language
processor contains a facility for dealing with a number of anaphoric
expressions (suct as pronouns) and filling in their antecedents.
That is, when the semantic interpreter produces an interpretation
of a noun phrase (a potential antecedant), it remembers that inter-
pretation together with the syntactic structure of the English

phrase. Subsequently, when an anaphoric expression is encountered

5.8

which could take this phrase as an antecedant, this semantic inter-
pretation is filled in for the anaphoric expression. However, the
semantic interpretation is merely a form which enables the retrieval
component to compute the actual members of the set denoted. Unless
the retrieval component has remembered the result of its previous
computation, it will have to perform the computation again. There
are thus two problems in dealing with anaphoric expressions--one

is recognizing them and identifying the antecedant, and the second
is remembering the actual set of data base objects denoted by the
antecedant., If the computation which determines the extension of

a phrase is sufficiently simple and cheap, then it is advantageous
to compute it over again, rather than to save the result. Only if
the computation is complex or expensive is it wcrth the cost in
memory space to store the result. Thus the retrieval component
needs some appropriate mechanism for determining whether to save
such results. (It would be nice if the system were smart enough

to know which types of computations might be used as antecedants.
It is not clear, however, that there is any recognizable feature

which distinguishes such computations.)

5.4.3 Optimizing the Retrieval Expression

At the present, the retrieval programs which are written by
the English language processor contain a number of inefficiencies
that are due to the way they were generated from natural English,

and which would be avoided by a human programmer. Although the
cost savings of having the program produced automatically (compared

to paying a human programmer to write it) will more than offset the
additional cost of computer time in all but extremely long compu-
tations, there are undoubtedly improvements that could be made

by imposing an optimization phase between the query generated

by the semantic interpreter and the actual retrieval operation.

The situation is very analogous to the early Fortran compilers

(and many that are still being written) where the guality of code
generated by the compiler was inferior to that produced by a

human programmer, but the savings in programmer time more than
offset the costs associated with the inefficiency for most programs—
especially if the program was not to be run many times. In our
case, the programs which are constructed will be executed only once,

and so the cost of a human programmer could not be amortized over
many runnings.

5.4.4 Semantic Representation

The previously mentioned problem areas have all dealt with
essentially efficiency questions that would make a system with
the current capabilities more economical to run. There are,
however, more serious problems having to do with the limitations
of the system's current capabilities. Although the procedural
approach to semantics and meaning that has been taken here
appears to be generalizable to any concept admisable to
empiricist philosophy, the fact remains that there are many
English constructions for which no effective procedural
characterizations have yet been formulated. For example, the
linguistic and semantic understanding of processes as fundamental
as adverbial modification and mass nouns remain very much
obscure and no effective mechanical semantics exists for such
concepts,

As discussed previously, the current LSNLIS deals only
with extensional inferences that can be computed from well-
formatted data bases. The ability to deal with more complex
types of data entities--especially descriptions of shape and
textural features of the lunar samples will require the use
of intensional inference procedures and will raise as a more
pressing issue the question of appropriate notational
representations and structures for these intensional entities.
In short, much basic research in the semantics of natural

language remains to be done before a fully general LSNLIS

5.10

can become a reality.

5.5 Prospects for the Near Future

As we have just pointed out, there are still many
technical and theoretical problems yet to be overcome before
the long term goals envisioned by this project can be achieved.
However, we feel that the language processing technology that
is embodied in the current prototype is such that certain types
of limited applications could be feasible in the near future.
In those areas where the semantically relevant concepts can
all be formally specified in terms of well-formatted data bases
such as the chemical analysis data base, and where only English
querying and not English updating and data input are required,
then the language processing techniques embodied in LSNLIS are
capable of providing a fluent language understanding system
which removes almost all of the burden of learning artificial
conventions from the user. Moreover, the time required for
processing requests in the current LISP implementation (approx.
30 seconds of cpu time per request on a hardware paged PDP-10)
could easily be cut by an order of magnitude by careful
implementation in a language such as FORTRAN or in machine
language. At such a level, the cost of such processing would

not be exorbitant.

5.11

5.6 Summagz

The LSNLIS project has made significant progress in its
two years of development. We now have a working prototype which
demonstrates many of the features which were the objectives of
the project and which demonstrates the technical feasibility of
natural English querying in the NASA MSC and other similar
environments., The system enables a working scientist to ask
questions and request computations in a natural and convenient
medium~-~his own natural language--in much the same form in
which they arise to him, with the effort required to recast
his request into a form suitable for execution in the data

base being assumed by the system.

5.12

References

Bobrow, D.G., Murphy, D.P., and Teitelman, W., "The BBN-LISP
System”, BBN Report 1677, Bolt Beranek and Newman Inc.,
Cambridge, Mass., April, 1968,

Chomsky, N., Aspects of the Theory of Syntax. Cambridge:
M.I.T. Press, 1965.

Chomsky, N., Syntactic Structures. The Hauge: Mouton and Co.,
1957.

Myer, T.R. and Barnaby, J.R., TENEX Executive Language, Bolt,
Beranek and Newman Inc., Cambridge, Mass., Jan., 1971.

Petrick, S., A Recognition Procedure for Transformational
Grammers. Unpublished doctoral dissertation, M.I.T., 1965.

Simmons, R.F., "Answering English Questions by Computer: A Survey",
Communications of the ACM, Vol. 8, No. 1, pp. 53-70, Jan. 1965.

Stockwell, R., Schachter, and Partee, B., Integration of
Transformational Theories on English Syntax. UCLA, 1968.

Watt, W.C., "Habitability", American Documentation, Vol. 19,
No. 3, July 1968.

Woods, W.A., "Semantics for a Question-Answering System".
Ph.D. thesis, Harvard University, Cambridge, Mass., Aug., 1967.

Woods, W.A., "Procedural Semantics for a Question-Answering
Machine," AFIPS Conference Proceedings, Vol. 33 (1968, FJCC).

Woods, W.A., "Augmented Transition Networks for Natural Language
Analysis", Harvard Computation Laboratory Report No. CS-1,
Harvard University, Cambridge, Mass., Dec., 1969.

Woods, W.A., Transition Network Grammars for Natural Language
Analysis. Communications of the ACM, 13, 591-602, Oct. 1970.

Woods, W.A., "An Experimental Parsing System for Transition Network
Grammars", BBN Report No. 2362, Bolt Beranek and Newman Inc.,

Cambridge, Mass., May 1972,

Woods, W.A., Kaplan R.M., "The Lunar Sciences Natural Language
Information System", BBN Report No. 2265, Bolt Beranek and
Newman Inc., Cambridge, Mass., September 1971.

5.13

Appendix A

THE LSNLIS USER'S GUIDE

Negotiating with TENEX

An experimental LSNLIS system is currently operational on the

BBN-TENEX Time-Sharing System in Cambridge, Mass. In order to
use the system, 1t 1s necessary to log into the TLENEX system.
This is done as follows: After establishing a telephone connection
with the computer by dialing the computer's number from a data set
or acoustically coupled teletype, the TENEX system will type some-
thing like:

BBN TENEX 1.21.00 5-APR-71 EXEC 1.26

C
The "@" sipgn is the TENEX executive's symbol which indicates that
it is waiting for the user to type something. The user should now
type:

LOGIN WARNER

followed by a space, followed by a secret password (which will not
print on the teletype), followed by another space, followed by an
account number, followed by a carriage return. (The password ana
account number will be given to authorized users.) For a hypotheti-
cal account number 777777, the line on the teletype would look like:

@LOG WARNER 777777

If you have logged in successfully, the system will type some
information relating to your teletype and job number, ana will type
another "¢" walting for your input. 1If not, it will give an error
comment and wait for you to try again. If you do not succeed in
logging in within a reasonable period of time, the system will
automatically log you out and break the telephone connection.

Once logged in, the user can call the execution of the
English preprocessor as described in the following section. He
can return to the TENEX executive at any time by typing control C
(i.e. by depressing the control key on the teletype and typing C).
To log out of TENEX at the end of the session, return to the TENEX
executlve and type:

LOGOUT

followed by a carriage return. The system will type some accounting
informatlon and automatically break the telephone connection.

Note: If for some reason the telephone connection should be
broken accidentally by some difficulty with the telephone 1line or
for any reason other than a normal logout, the job will be held by
the TENEX system in a "detached" status and can be resumed. This
can be done by dialing up the machine again and instead of typing
LOGIN, type ATTACH (space) (password) (space) (the job number that
the system assigned you when you logged in)(carriage return). If
you are successful, TENEX will type "@" with no further comment and
you will be reattached to your old job. If you had lost the con-
nection while in the English preprocessor subsystem, you can resume
it by typing CONTINUE followed by a carriage return. If you have
any trouble reattaching, call BBN by telephone. A detached jeb
continues to be charged for computer hookup time until you reattach
to it and log it out normally.

Using the English Preprocessor

After logging into the TENEX system, the user enters the
English preprocessor by typing:

RUN DEMSYS.SAV

followed by a carriage return. The system will then tyvpe a

comment something like:
BBN LISP-10 11-31-70

and will then type a left arrow indicating that LISP 1s walting
for input. The user should then type:

SETUP (LOWFORK.SAV)

This sets up the lower (retrieval) fork which contains the data
base. When the system again types tne left arrow, the user shoulu

type:
TALKER()

to invcke the Knglish preprocessor executive, Notice that LISP

will echo a carriage return as soon as the parentheses in its input
string ballance. TALKER will identify itself, and will then pro-
ceed to accept queries for processing or LISP commands for execution.
The former consist of English sentences enclosed in parentheses,
while the latter consist of LISP commands followed by arguments
enclosed in parentheses.

TALKER indicates that it 1s waiting for input by typing its

"system symbol", which consists of two asterisks.

To leave TALKER and return to the TENEX executive at the end
of the session, one can either type control C as described before,

or one can type the LISP command.

LOGOUT()

Control Characters in LISP

There are a number of special control characters which make
life easy 1n the interactive LISP system in which the English
processor runs. These characters are typed by depressing the
control key on the teletype and typing the corresponding character,
If printed on the teletype, a control character is preceeded by
an upward arrow, however, most of the control characters do not
print when they are tvped, but cause a side effect. The following

characters are useful.

Control A deletes the preceeding typed character.

It indicates the deleted character by echoing a
backwards slash followed by the deleted character.

Control Q deletes the current contents of the input buffer.
(Generally the input buffer is the same as the current
tvped line--the exception being automatic carriage
returns generated by the syvstem when the user types
beyond the end of the line, These exceptions are
indicated by two asterisks beginning the new "line".)

Control R retypes the current contents of the input buffer
(useful when echos from control A have made the current
line unreadable).

Controcl D aborts whatever you are doing, and returns to the
top level LISP executive. (useful whenever you get into
trouble or want to discontinue a sentence and type
another sentence. It throws you out of TALKER, however,
and it is necessary to retype TALKEK()).

Control E is less drastic than Contrcl D and will usually
abort a sentence and return to TALKER to await another
sentence. It should usually be used before trying
Control D, Control E will not break out of an embedded
help loop, however,

Control C interrupts whatever you are doing and returns to
the TENEX executive under which the LISP system runs.
This is used in order to return to TENEX to logout, but
can also be used to return to TENEX for any other reason,.

(The 1interrupted LISP system can be continued by typing

A.4

CONTINUE to the TENEX executive as long as it has
not been supplanted by a call to some other sub-

system.)

CAUTION:

Typing control characters D or E while the lower fork is
operating will yank control away from the lower fork and return
it to the language processor fork at the top level, leaving the
file buffers open and exiting from the TALKER routine. If this
happens, the user should type EXECUTE(NIL) to close the file
buffers in the lower fork (and type out whatever had been written
into the HITFILE buffer before the interrupt) and then type

TALKER() to reenter the language processing executive.

Entering Queries for Processing

Queries are entered into the LSNLIS system as normal English

sentences enclosed in parentheses. For example:
¥*(GIVE ME ALL ANALYSES OF SAMPLE S10046)

(TALKER types the double asterisks to indicate that it is ready

for input.) Terminal punctuation is optional.

The system understands such concepts as "give me ...",
"analyses of a sample for an element in a phase", "modal analyses",
"Potassium / Rubidium ratios", "average analyses'", etc. It knows
both the full chemical element names ad tneir abbreviations, it
knows which of the elements are measured in their oxide form as
opposed to the elemental form, and it knows & number of variant
names for many minerals and rock types. Thus, the user need not
concern himself with knowing the particular standard form of the
mineral or element names used in the data base, since this standard-
ization takes place during the semantic interpretation of his
request. Also, the system makes an effort to allow for all of the
reasonable paraphrases of a given request so that the user need
not concern himself unduly with the problem of formulating his
request in a way which will be acceptable to the system, All of
the expressions "Olivine analyses of Sample S10046 for Hydrogen",
Hydrogen analyses of Sample S10046 in Olivine", "analyses of
S10046 for Hydrogen in Olivine", etc. are equivalent.

In addition, the system knows reasonable default assumptions
when the requestor fails to mention the phase or element of concern
in hils request. If he fails to mention the phase, the overall
phase (i.e. the entire sample) is assumed. Likewise, if he fails
to mention a specific element, then a quantification of the request

over the major elements is assumed.

Depending on the setting of a number of mode variables, the
system can display various intermediate results in the course of
the processing. It can show the time spent in parsing and in
interpreting, the parse tree that results, the intermediate semantic
interpretation, and finally the answers that are generated by the
sentence. In the normal mode, only the interpretation and the
answers will be displayed. However, any of the other displays can
be obtained by setting the corresponding mode variable to "1I'" (the
LISP system's symbol for "true") and they can be turned off again
by setting the mode variable to "NIL" (the LISP system's equivalent

of "false"). For example, the commands:

SETQ(PPRINT T)

SETQ(ITIMEFLAG NIL)
will set the mode variable PPRINT to "T" indicating that parsings
should be printed and will set ITIMEFLAG to "NIL" indicating that the
interpretation time is not be be printed., The mode variables
which govern these functions are PPRINT (print parsing), IPRINT
(print intermediate semantic interpretation), PTIMEFLAG (time
the parsing), and ITIMEFLAG (time the semantic interpretation).
There are other mode variables which govern other aspects of the

system, but they are not necessary to the tvplcal user.

Encountering Unknown Words

The previous sections cover all of the basic information
needed by a user as long as he uses only words that are in the
vocabulary of the system, -- currently three or four thousand
words. However, it 1s inevitable that a user, asking unconstrained
questions about technical subjects will use words which the system
has not previously encountered and are not in its vocabulary. We
will therefore give here a brief description of the system's
operation in that case.

When the system encounters a word which is not in its
dictionary and is not an inflected form of a word»in its dictionary
(it performs inflectional morphology on the most common types of
regularly inflected words), it announces this fact to the user
with a comment:

I DON'T KNOW THE WORD XXXXXX
PLEASE TYPE ITS DICTIONARY ENTRY
D#*

(where XXXXXX will be the word in question).

at this point, the system 1s in a special subsystem executive
(which identifies itself with the system symbol "D*")waiting for
the user to give it a dictionary entry for the indicated word.

The user may at this point do any of several things. If he wants
to glve up on the sentence and try again from scratch, he can type
QUIT followed by carriage return, and the system will return to
ask for another sentence. If he knows the correct form for the
needed dictionary entry, he can type DDEF followed by the proper
dictionary entry to add the word to the dictionary, and then type
OK followed by a carriage return to tell the system to continue

its parsing. If the user does not know the proper format for

the dictionary entry, he can look at the dictionary entry for a
similar word and copy it. The command DICT? followed by a word
in parentheses will type the dictionary entry for a word. For
example:

DICT? (REPORT)

would result in a typeout of the dictionary entry for the word

"report", which would look like:

(REPORT
N =3)

The dictionary entry will print out with indenting for easier
reading, but the indenting 1is not necessary for a dictionary entry
which the user types in. To type 1in this same dictionary entry,

the user would type:

DDEF(REPORT N =S)

If the word which the system requests 1s the root form of the
word or if it is an inflected form of a word which undergoes regu-
lar inflection, then the user need only give a dictionary entry
for the root of the word. If, however, the word is an inflectea
form of a word which does not undergo regular inflection, then he
should give entries for voth the root word and the inflected form.
The following 1nterchange 1s an example:

I DON'T KNOW THE WORD MICE
PLEASE TYPE ITS DICTIONARY ENTRY
D*¥DDEF(MOUSE N IRR)

MOUSE

D*DDEF(MICE N (MOUSE (NUMBER PL)))
MICE

D*0K

Here, the computer typed everything except the lines that begin

with "D¥" and the computer typed the "D¥"'s which begin those lines.
For more complete information on the format for dictionary entries,
see the writeup on dictionary formats.

One frequent source of words which are not in the dictionary
are misspelled words. If a misspelling is not caught by the user
at the time he types it, the system will generate an "I DON'T KNOW
THE WORD" comment and wait for a dictionary entry. If this 1is the
case, the user can change the word to the correct word by typing
CHANGEWORD followed by the new word or words enclosed in parentheses.
For example:

I DON'T KNOW THE WORD MODOL
PLEASE TYPE ITS DICTIONARY ENTRY
D*CHANGEWORD (MODAL)

The system will respond by typing the remainder of the sentence to be
parsed with the new substitution. Note that CHANGEWOKD can be

used to delete a word (by including no words in the parentheses)

or to replace a single word by several (by including several words
in the parentheses). Its use is in no way restricted to correct-
ing spelling errors, however, and it can conveniently be used to
substitute an equivalent word to see if the system knows it. (If
not, the system will again respond with an "I DON'T KNOW THE WORD"
message.) When the user is satisfied with the change, typing OK
will cause the system to resume parsing on the changed string.

Logging Out

Although this information has already been covered in
previous sections, I will cover it again here for easy reference.
When the user has completed a session with the system and is ready
to log out, he must first return to the TENLX executive. He can
do this either by typing LOGOUT() or by typing control C. When
the system responds with an "@", he need only type LOGOUT followed
by a carriage return, and the system will automatically logout and
break the telephone connection.

A' 11

Appendix B,

The Transition Network Grammar

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PHM PAGE 1

(PROGN (LISPXPRIN1 (QUOTE "FILE CREATED ")
™)
(LISPXPRIN1 (QUOTE "12-JUN-72 21:5u4:128")
)
(LISPXTERPRI T))
(LISPXPRINT (QUOTE ANNGRAMCOMS)
T)
(RPAQQ ANNGRAMCOMS ((G: NASAGRAMMAR)))
(LISPXPRINT (QUOTE (G: NASAGRAMMAR)) T)
(RPAQQ NASAGRAMMAR (COMPL/ COMPL/NTYPE COMPL/S FOR/FOR FOR/NP FOR/TO
ING/BY NP/ NP/, NP/,ESP NP/,NP NP// NP/ADV NP/ART HP/AVG NP/DET NP/HEAD
NP/HELDPART NP/MORE NP/N NP/NP NP/NP: NP/ORD NP/QUANT NP/R
NP/SUPERLATIVE NP/SUPERSET NPR/ NPR/NPR NPR/TITLE ©:2U/; NPU/;NP PAREN/
PAREN/PAREN PP/ PP/NP PP/PREP PP/QDET QUANT/ QUANT. ;UANT QUANT/UNIT
R/ R/NIL R/PREP R/WH S/ S/; S/;S S/AUX S/DCL S/HOW 5/IMP S/NO-SUBJ
S/NP S/Q S/QDET S/QP1 S/QP2 S/S S/SADV S/THERE S/¥? VP/ADJ VP/ADJ-COMP
VP/AGT VP/COMP-ADJ VP/HEAD VP/MORE VP/NP VP/V VP/V2))

(DEFINEG
(COMPL/
(WRD FOR T
(TO FOR/FOR
(+ START OF COMPLEMENT NETWORK;
TRANSFERS TO THE PROPER STATE FOR THE IDENTIFIED
COMPLEMENTIZER,)
))
(WRD THAT T

(SETRQ NTYPE THAT)

(TO COMPL/NTYPE))
(WRD THAN T

(SETRO NTYPE THAN)

(TT COMPL/NTYPE))
(JUMP FOR/NP T

(CoND

((NULLR SUBJ)
(SETR SUBJ (BUILDQ (NP (PRO SOMETHING))))))))

(COMPL/NTYPEL
(PUSH S/ T
(SETR S *)

(* LODK FOR A COMPLETE S WHEN THE COMPLEMZINTIZER
(IN NTYPE) SO SPECIFIES)

(T. COMPL/S)))

5 <WEBBER>ANNGRAM,;23 MON 12-0JUN-72 9:5u4PM PAGE 1:1

(COMPL/S
(POP (BUILDQ (NP + +)
NTYPE S (* LAST STATE OF
COMPLEMENT NETWORK;
FOPS A COMPLEMENT NP
STRUCTURE,.))
T))
(FOR/FOR

(PUSH NP/ T
(SETR SUBJ =)

(« IF THF COMPLEMENTIZER IS 'FOR', LOOK FOR THE
SUBJECT NP OF A FOR-TO COMPLEMENT)

(TS FOR/NPY)))

(FOR/NP
(WRD T™ T
(TT FOR/TO (* LOOK FZR 'TO' QR 'NOT
T0'.)))
(CAT WEG (NULLER NEG)
(SETR NEG =)
(T> FOR/XNP)))

(FOR/TO
(PUSH Vp/V (CHECKF Vv UNTENSED

(*» IF 'TO', 'NOT TO', OR 'FOR' + NP WAS FOUND, LOOUK
FOR THZ REMAINDER OF THE FOR-TO COMPLEMENT,)

(SENDR SURJ (GETR SUBJ))
(SENDR OBJ (GETR 0BJ))
{(SENDR NEG (GETR NEG))
(SENDR TNS (GETR TNS 1))
(SENDRQ TYPE FOR-TO)
{SETRO NTYPE NOM)

(SETR S x)

{T” COMPL/S)))

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:5uPM PAGE 1:2

(ING/BY
(PUSH NP/ T
(SETR SUBJ =)
(TO VP/VP

(« IF THE SUBJRCT WAS NOT PROPERLY DETERMINED IN A
POSS-ING COMPLEMENT, LOOK FOR IT HERE,)

)))

(NP/
(CAT DET T

((GETF POSSPRO (* START “F THE NP
NETWORK,))
(ADDL ADJS (BUILDQ (POSS (NP (PRO *)))))
(SETRQ DET THE

{*» IF THE DETERMINER IS A POSSESSIVE PRONQUN
(MY, YOUR), CONSTRUCT THE POSSESIVE MODIFIER AND USE
'ZHE' FOR THE DEZTERMINER)

))
(T (SETR DET =*)))
(IC NP/ART))
(CAT PRC T
(SETR N (BUILDQ (PRO *)) (* A PRONOUN MAY PICK UP
FP MODIFIERS IN NP/HEAD)
)
(SETR NU (GETF NUMBER))
(T> NP/NP))
(MEM (WHETHER IF)
T
(SETR NTYPE =)
(T° COMPL/NTYPE

(# CONSTRUCT THE COMPLEMENT STRUCTURE FUR LENTENCES
SUCH AS 'I DON'T KNOW WHETHER HE LEFT,')

))
(CAT NEG (NULLR NEG)
(SETR NEG *)
{T" NP/)})
(JUMP NP/ART (OR (WRD MOST)
(NOR (CAT (DET PRO NEG)

(* SINCE r PRONOUN CR DETERMINER 1S NOT REQUIRED TO
RLGIN AN NP, CONTINUE PROCESSING,)

)
(WRD (WHOSE WHO WHAT WHETHER IF)))}))

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5uPM

(NP/,
(MEM (ETC, ETC)
T

{ADDR BODY =

(SETRQ CONJ AND)
(TC NP/ NP))
(CAT ADV (RFEAT TRANSADV)

{SETR ADV x)
(TS NP/,ESP))
{CAT CCZNJ (NOR (WRD ,)
(GETR CONJ))

{SETR CONJ =)
(TD NP/s))
{PUSH NP/ T

{SENDR NPLIST T)
(LDDR BODY =)
{T> NP/,NP)))

(NP/,ESP
(PUSH NP/ T
(ADDL NMODS (BUILDQ (RDVP (ADV +)
*)
ADYV)

)
'D
(NULLR PPFLAG)
(SETRO PPFLAG T)))
(T~ NP/HEAD)))

(C

—
.

PAGE 1:3

(* AFTER A COMMA AT THE
END OF A NP.)

(« 'ETC' FILLS 0OUT A
CONJOINED SERIES.))

{* A TRANSITIVE ADVERB
('PARTICULARLY',
YESPECIALLY') May
INTRODUCE A POST-NOMINAL
MODIFIER,)

{(* A CONJUNCTION CAN
LEAD INTO THE FINAL ITEM
IN A SERIES,)

(*» LOOK FLR THE NEXT
ITEM IN THE SERIES,)

(* ANALYZE THE
rOST-NOMINAL MODIFIER
INTRODUCED BY THE
TRANSITIVE ADVERB)

; <WEBBER>ANNGRAM,;?23 MON 12-JUN-72 9:5u4PHN PAGE 1:4

(NP/,NP
(WRD , T
(TC NP/,

(« AN ITEM IN A COMMA-SPLICED NP SERILS HAS BEEN
FOUND, IF THE NEXT WORD IS ',', LOOK FOR SUBSEQUENT
ITEMS, OTHERWISE, POP THE CONJOINED STRUCTURE,)

)
(POP (COND
{(AND (NULLR CONJ)
(WRD (AND OR)
(CADAR (LAST (GETR BODY)})))
(PROG (BODY CONJ LAST TEMP)

(= IF NO CONJ wAS FOUND AT THIS LEVEL BUT THE LAST
NP IN THE SERIEZS WAS ITSELF A CONJOINED NP WITH A
CONJ, PROMOTE THE CONJ UP TO THIS LEVEL:

(NP1 NP2 (NP AND NP3 NP4)) -->

(NP AND NP1 NP2 NP3 NPU)})

(SETQ BODY (APPEND (GETR BODY)))
(SETQ LAST (LAST BODY))
(SETQ CONJ (CADR (SETQ TEMP (CAR LAST))))
(RPLACD LAST (CDDDR TEMP))
(RPLACA LAST (CADDE TEMP))
(RETURN (CONS (QUOTE NP)
(CONS CONJ BODY)))))
(T (BUILDQ (@ (NP #)
+)
(COND
((GETR CONJ))
(T (QUOTE OR))

(« IF TKE LAST ITEM WRS NCT A CONJOINZD NP AND THERE
WAS NO CONJ AT THIS LEVEL, INSERT 'OR')

)
30DY)))
(OFR (GETR COKJ)
(#RD (&ND OR)
{CADARE (LAST (GETR BODY))))
(NULL STRING))))

; <WEBBEE>ANNGRAM.;23 MON

(NP//
(CAT N T

12-JUN-T72 9:54PH PAGE 1:5

(SETR N (BUILDQ (N + / (N =*))
(* FIND THE SECOND TERM

N)
IN A RATIU)

)
{TC NP/DET))

(PUSH NPR/ T
(SETR N (BUILDQ (N + / =)

NY)
{(TC NP/DET)))
(NP/RDV
(CAT AaDJ T
(KDDL ADJS (BUILDO (@ (ADJP)

#
((ADJ *)))
(REVERSE (GETR ADVS)))

(» AN ADVEKB HAS BEEN FQUND AFTER THE DETERMINER
STRUCTURE HAS BEEN BUILT, OR AFTER 1 OR MORE
PRENOMINAL MODIFIERS HAS BEEN PROCESSED,

A SEQUENCE OF ADDITLONAL ADVERBS IS ALLOWFD, URTIL
THF ADJECTIVE THEY MODIFY IS FOUND, COMPLRTING THIS

PARTICULAR PRENOMINAL MODIFIER,)

)
(T® NP/DET))

(CAT ARV T
{ADDL ADVS (BUILDQ (ADVS =)))

(To NP/ADV)))

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PN

(NP/ART

(CAT ORD T
(SETR POSTART (BUILDQ ((ORD *)))

(* AN ARTICLE (POSSIBLY NULL)

)
(TZ NP/ORD)

PAGE 1:6

HAS BEEN FOUND;
LOOK FOR AN OPTIONAL ORDINAL MODIFIER)

(« THE NEXT TWO ARCS CATCH DEFINITELY DET®RMINED

INFLECTED ADJECTIVES LIKE:
"THE OLDEST RCCK",

)
(JUMP NP/SUPERLATIVE (AND (CAT ADJ)
(WRD THE DET)))

(GETP (NEXTIWRD)
(QUOTE ADJ))
(WRD THE DET))

(WRD (MORE MOST) (AND

{SETR MORE-MOST x)
(T> NP/SUPERLATIVE))

(CAT PRO (WRD OXNE)
(SETR N (BUILDQ (PRO *))

)
(SETR NU (GETF NUMBER))

(SETR DET (DETBUILD))
(SETR HEAD (CADR (GETR N)))
(TC NP/HEAD))

(JUMP NP/ORD T))

"THE MOST ANCI:NT ROCK",
“THE MOEEZ ANCIENT ROCK")

(» THE PR NOUN "ONE"™ CAN
FOLLOW A DETERMINER,
E,G, "THE ONES WHICH,.."
AND “WHICH ONDS")

; <WEBBER>ANNGRAMN.;23

(NP/AVG
(PUSK PP/
(SENDR V

(ADDL NNMODS =)

(SETR HEAD

(17 NP/HEARD)

(CADR

MON 12-JUN-T72 9:54PHM PAGE 1:7

{CAT PREP)
(GETR V}))

(GETR N)))

(NB/DET
(WRD

"MAXIMUM", "MININUM",
WHEN THEY

(*» THE FUNCTION WORDS "“AVERAGE",
"MOST", AND "LEAST®" ARE PARSED AS NP'S,
APPEAR IN ADJECTIVE POSITION,

THE REST NF THE SS NP IS MADE THE OBJECT OF A
DEPENDENT PP, IT INDICATES THE SET OVER WHICH THE
FUNCTION IS TO BE APPLIED, E.G., "“THE OLDEST ROCK"
ANALYSED AS "LHEL OLVEST OF LHE ROCK2"™)

IS

(PUSH PP/PREP (NOT (CAT PREP))

(SENDRQ PREP OF)

(SENDRQ NU' PL)

(SENDR V (GETR V))

(ADDL NMODS =)

(SETR HEAD (CADR (GETR N)))

(T3 NP/HEAD)))

(MORFE XOST) (AND (GETP (NEXTWRD
(* HERE AFTER THE COMPLETE DETERMLINER STRUCTURE
(INCLUDING ART, ORD, ANL QUANT) HAS BEEN PROCESSED,
LONK FOR POSSIBLE PRENOMINAL MODIFIERS
(ADJECTIVES OR PARTICIPLES
(WITH ADVERBS)) AND THEN LOOK FOR A POTENTIAL
HEAD--AN N, NPR, OR GERUND, OR EVEN A 0SS-ING
NOMINALIZATION.)

(QUOTE ADJ)
(* WE RFCOGNIZE UNDETERMINED TWO-WORD INFLECTED
ADJECTIVES, THE THIRD ARC BUILDS AN ADDITIONAL NP
NODE FOR "AVERAGE"™, "MAXIMUM", ETC,
(SEE NE/AVG FOR FURTHER DETAIL.))
)
(NOT (WRD THE DET)))
(SETR MORE-MCST =)
(T” NP/MORE))

<WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PN PAGE 1:8

(CAT N (WRD {(AVERAGE MAXIMUM MINIMUM MOST LEAST))
(SETR N (BUILDQ (N =*)))
(SETR NU (GETF NUMBER))
(TC NP/AVG))

(PUSH NPR/ (WRD (SAMPLE ROCK LINE LINE® APOLLO))

(SETR N =)
(SETRQ NU SG)
(TO NP/N)
(» PICKS UP TITLES LIKE
"APQLLO 11", "LINE 5"))
(CAT ADJ T
(ADDL ADJS (BUILDO (@ (ADJ)

(%)
)
FEATURES))
(TC NP/DET))
(CAT N T
(SETR N (BUILDQ (N =*)))
(SETR NU (GETF NUMBER))
(TC NP/N))
(CAT ADV T
(SETR ADVS (BUILDOC ((ADV3 =))))
{TC NP/ADV)Y)
(CAT V (OR (GETF PASTPART)
(GETF PRESPART))
{* PRENOMINAL
UARTICIPLES)
(KDDL APJS (BUILDO (ADJ (PARTICIPLE #))
LEX))
(T NP/DET)Y)
(CAT V (GETF PRESPART)
(* GERUND HEAD, AS IN
'"FRTEZE DRYING')
(SETR N (BUILDQ (KN #)
LEX))
{SETRO NU 56)
(T NP/NY)
(PUSH S/AUX (DR (CAT (NEG ADV}))
(CHECKF V PRESPART))

(« PUSH FOR A POSS-ING NOMINALIZATION,

('JOHN'S FALLING +.»') IF A POSSESSIVE MODIFIER HAS
BEEN FOUND, IT BECOMES THE SUBJECT OF THE COMPLEMENT
SENTENCE, OTHERWISE THE SUBJECT IS 'SOMETHING')

B.10

5 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PM

(SENDR SUBJ (COND

{(WBRD POSS (CAAR (GETR ADJS})))

PAGE 1:9

(SETQ TEMP (CADAR (GETR ADJS)))

(SETR ADJS (CDR (GETR ADJS)))

TEMP)
(T (SENDR SUBFLAG T)

(BUILDQ (NP (PRO SOMETHING))})))

(SENDRQ TYPE POSS-ING)
(SETRQO NTYPE NOWM)
(SETR 5 =)
(TO COMPL/S)Y)
(PUSH NPR/ T
(SETR N *)
(SETRQ NU S8G)
(TT NP/N)Y)

(NP/HEAD
(VIR PP (NPREP)

(= HERE WHEN THE HEAD OF THE NP HAS BEEN POSITIVELY

DETERMINED., LOOK FOR POST-NOMINAL

MODLIFIERS:

PREPOSITICNAL PHRASES, RELATIVE CLAUSES, TO- AND

THAT~ COMPLEMENTS, PPFLAG IS 1

AFTER A PP HAS BEEN

FOUND; IT INSURES THAT SUBSEQUENT REDUCED RELATIVES

WILL MODIFY THE NEAREST ¥P,)

(ADDL NMUDS =«

(COND
((NULLR PPFLAG)
(SETRO PPFLAG T)))
(T™ NP/HEAD))

(» RECOGNIZES FRONTED
PP'S WHICH BELONG TO THE
NP))

(PUSH B/ (AND (OFR (WRD (WHO WHOM WHOSE WHICH THAT))
{AND (WRD (WHICH WHOM WHOSE)

(NEXTWRD))
(CAT PREP)))
(OR (CADR (GETR DET)

)
(WRD PL NU)))

{SENDRQ TYPE REL)
(SENDR WH (BUILDQ (NP (DET WHR)

+

(NU +))

N NU))

(SENDR ANAPHORFLG (CADR (GETR N)))
(LDDL NMODS *)
(T NP/R))

(* THIS RESTRICTION
DISALLOWS
NON-RESTRICTIVE RELATIVE
CLAUSES)

<WEBBEP>ANNGRAM,;23 MON 12-JUN-72 9:54PM PAGE 1:19

.
’

(PUSH R/WH (AND (CAR V)
(GETR RELVPFLG))
(! (COND
((WRD (WHICHO HOWMANY)
(CADR (GETR DET)))
(SENDR ANAPHORFLG (COND
((WRD ONES (CADR (GETR N)))
(GETR ANAPHORFLG))
(T (CADR (GETF N))))))))
(SENDRQ TYPE QKEL)
(SENDRQ RELVPFLG T

{« THE QUESTIONED NP IS MADE THE DS SUBJECT AND THE
REMAINDER OF THE SENTENCE IS MADE A RELATIVE CLAUSE
OF TYPE QRZL ON THE SUBJECT)

(SENDR WH (BUILDQ (NP (DET WHE)
#
(NU +))
(COND
((WRD ONES (CADR (GETIR N)}))

{GETR ANRPHORFLG))
(T (GETR N}))

NU))
(4DDL NMODS =)
(TS NP/NP))

(JUMP NP/NP (OR (NOT)
(AND (WRD T0)
(RFEAT INDOBJ V

(= THE JUMP NP/NP ARC CAN BE TAKEN IN TWO PLACES,

DEPENDING ON THE REGISTERS AND THE CURRENT WORD)

{VPREP =)
(NOR (NPREP =)
{WRD (OF FOR))
({WRD IT (CADR (GETR N)))))
(LIFTR NPFEATURES (RESUMETAG NP/HEAD))
{COND
({GFTR PARTFLAG)
(LIFTR ANAPHORFLG (GETR N)
2

(#« IF NP OCCURS IN R PARTITIVE CONSTRUCTION, ITS
HTAD I5 LIFTED UP TO THE HIGHER NP FOR FURTHER USE,)

)1

<WEBBER>ANNGRAM,:23 MON 12-JUN-72 G:5u4PHM

(PUSH PP/ (CAT PREP)
{SENDR V (GETR V))
(ADDL NMODS =)

(COND
((NULLR PPFLAG)
(SETRO PPFLAG T)))
{T> NP/HEAD))
(PUSH FOR/NP (WRD TO)

(RDDL NMODS (BUILDQ (COMPL *)}))
(CCND
((NULLR PPFLAG)
(SETRQ PPFLAG T)))
(TC NP/HEAD))
(TST R/NIL (AND (GETR PPFLAG)

PAGE 1:11

(* LOOK FOR
TO-COMPLEMENTS ¢
TO DO ITees')

(NOR (WRD (WHAT WHO WHOM WHICH THRT WHCSE))

(GETR QDET)

(AND (WRD BE (GETROOT =* V))

(NOT (EQ =

{SUSPEND 1)

(QUOTE BEING))))))

(* LOOK FOR REDUCED RELATIVES AFTER SEEING A PP,

THE SUSPEND MEANS THAT THE ACTIONS

(INCLUDING THE PUSH) WILL GET DONE AFTER THE
FOLLOWING JUMP ARC HAS BEEN TAKEN AND LEADS TO A
BLOCK; THFE SUBSEQUENT BACKUP WILL CAUSE THE RELATIVE

IN 'THZ MAN NEAR THE GIRL I SEE'
INSTEAD OF 'MAN' IN THE FIRST PARSE,)

(SENDRQ TYPE REL)
(SENDR WH (BUILDQ (NP (DET WHK)
+
(NU +))
N NU))
(PUSH R/NIL)
(#DDL NMODS x)
(T® NP/R))
(JUMP NP/NP (NOR (NOT *)
(AED (WRD TO)

(RFEAT INDOBJ V))

(VPREP *)
(NOR (NPREP =)
(WRD OF)))

70 MODIFY 'GIRL'

(#+ THIS SETS UP THE REGISTER NPFEATURES AT THE LEVEL
ABOVE THIS SO THAT THE RESUME MACHINERY WILL RETURN
AN EXTRAPOSED RELATIVE CLAUSE TO THIS rOSITION)

B.13

'THE WAY

; <WEBBFE>ANNGRAM,;23 MON 12-JUN-72 9:54PM PAGE 1:12

(LIFTR NPFEATURES (RESUMETAG NP/HEAD))
(COND
((GETR PARTFLAG)
(LIFTR ANAPHORFLG (GETR N)
23)))
(PUSH KE/NIL (NOR (GETR PPFLAG)
(WRD (WHAT WHO WHOM WHICH THAT WHOSE))
(GETR QDET)
(AND (WRD BE (GETROOT =* V))
(NOT (EQ = (QUOTE BEING)))))
(SENDRQ TYPE REL)
(SENDR WH (BUILDQ (NP (DET WHR)
+
(NU +))
N ONU))
{ADDL NMODS =)
(T NP/R))
(PUSH COMPL/ (AND (WRD THAT)
(WRD (2 THE)
(CADR (GETR DET))

(* FOR NOUNS MARKED FACTN (E.G. 'STATEMENT', 'PACT'),
THIS ARC LOOKS FOR A THAT-COMPLEMENT
('THE FACT THAT I ARRIVED...'))

)
(RFEZAT FACTN HEAD))
(ADDL NMODS (BUILDQ (COMPL =*)))
(T NP/NP)Y)
(PUSH COMPL/NTYPE (RFFEAT FACTN HEAD)
(* LOOK FCR &
THAT-COMPLEMENT WITH
DELETED 'THAT')
(SENDRQ NTYPE® THAT)
(ADDL NMODS (BUILDQ (COMPL =*)))
(TZ NP/NPYY))

(NP/HELDPART
(JUMP NP/DET T

(* A PARTITIVE HAS BEEN
TAKEN OFF THE HOLD LIST
AT STATE NP/QUANT,)
(= LOOK FCR A REGULAR
HEAD: 'OF THESE HOW MANY
MEN WENT ...'))

(JUMP NP/HEAD T

{(*» THE HEAD WRS DELETED; INSERT AN APPROPRIATE
DUMMY: 'OF THESE HOW MANY WENT ,..')

(SETRO N (PRO ONES))
(SETRQ NU SG/PL)))

B.14

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 Q9:54PH PAGE 1:13

’

(NP/MORE

- (CAT ADJ (GETR MORE-MOST)

(ADDL ADJS (BUILDO (@ (ADJ) (*)

#)

(COND
((WRD MORE MORE-MOST)
(QUOTE (COMPARATIVE)))

(T (QUOTE (SUPERLATIVE))))))

(TS NP/DET)

{=* NP/MORE RECOGNIZES TWO~-WORD INFLECTED ADJECTIVES

AND PAST PARTICIPLES, E,G, "MORE BRECCIATE:D",
“"MORE METALLIC", "MOST REPRESENTATIVE"™)

)
(CAT V (AND (GETR MORE)
(GETF PASTPART))

(BUILDQ (ADJ (PARTICIPLE #)

(ADDL ADJS
COMPARATIVE)
LEX))
(T> NP/DET)))
(NP/N
(CAT LIST (AND (WRD S5G NU (*» ADJUST NU FOR AN
_ ALTERNATIVE PLURAL
SPECIFICATION 'BOY
(s)y ")

(#+ A TENTATIVE HEAD HAS BEEN FOUND, BUT IT MAY BE

ONLY TKE FIRST PART OF A NOUN-NOUN OR
NOUN-ADJECTIVE-NOUN SEQUENCE,)

)

(KRD (S ES)
(CAR *)}))
(SETRO NU £G/PL)
(T NP/N))
(WRD / T

{#« '/' FOLLOWS THE TENTATIVE HEAD, INDICATING THAT

WAS THE FIRST TERM QF A RATIO)

I7
(T> NP//))
(CAT P73S T

{* POSS ('S) MARKS THE PRECEDING HEAD AS A GENITIVE

~ MODIFIER ON A HEAD WHICH IS TO FOLLOW,
SET UP THE PROPER STRUCTURZ AND LOOP TO NP/DET,)

e

<WEBBER>ANNGRAM, ;23 MON 12-JUN-72 9:54PN PAGE 1:14

(SETR ADJS (BUILDO ((POSS #))
(NPBUILD)))

(SETRQ DET THE)
(TC NP/DET))
(JUMP NP/KEAD (CAT PREP)
(COND
((GETR NU')
(SETR XU (GETR NU')

(= AS SOON AS WE HAVE SEEN A PREPOSITION, WE KNOW WE
HAVE SEEN THE HEAD, THE HEAD OF THE PP ILNDICATING
THE SET OVER WHICH "AVERAGE", "MAXIMUM", ETC, RANGE

(SEE NP/DET) IS ALWAYS PLURAL,
THIS INDICATION IS PASSED DOWN IN THE REGISTER NU',)

1Y)
(SETR HEAD (CADR (GETR N)}))))

(CAT N (NOR (WRD PL NU)
(EQ LEX (NUOTE BEING)))

{* A NEW H=AD IS FOUND, IMPLYING THAT THE PRECEDING
HEAD IS A NOUN-MODIFIER,)

(ADDL ADJS (BUILDQ (ADJ +)
N))

(SETR N (BUILDQ (%Y *)))

(SETR NU (GETF NUMBER))

(T° NP/N))
(PUSH NPR/ (NOF (CAT V)
(CAT PREP)
(

NULL STRING))
(*+ THE NEW HEAD IS &

PROPER NOUN MODIFIED BY
THE OLD HEAD.)

(ADDL ADJS (BUILDO (ADJ +)

N))
(SETR N *)
(SETRQ NU §6)
(T2 NP/N))
(CAT ADJ (NOT (WRD PL NU))
(* AN ADJECTIVE AFTER A

TENTATIVE HEAD IMPLIES
AN N-ADJ-N STRUCTURE,)

(ADDL ADJS (BUILDQ (ADJ +)
X))

(ADDL ADJS (BUILDQ (@ (ADJ)
(*)

}
FEATURES))

(T2 NP/DET))

B.16

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PM PAGE 1:15

(CAT V (AND (GETF PRESPART)
(NOT (WRD PL NU))
(NOT (VPARTICLE # (NEXTWRD)))

(NOT (AND (GETR N)
(EQ LEX (QUOTE BEING)))))

(« A GERUND HERE IS TAKEN AS THE HEAD--R SUBSEQUENT
N WILL MOVE IT TO A PARTICIPIAL MODIFIER POSITION.)

(ADDL ADJS (BUILDQ (ADJ +)
N))
(SETR N (BUILDQ (N #)

LEX))
(SETRO NU 35G)
(T> NP/N))
(JUMP NP/HEAD (NOT (CAT PREP))

(SETR HEAD (CADR (GETR N)) (#* SEE EARLIER JUMP
NP/HEAD ARC FOR
EXPLANATION QOF NU',)

)
{COND
({GETR NU')

(SETR NU (GETR NU')))))

(CAT ¥ (OR (WRD PL NU)
(EQ LEX (QUOTE BEING)))

(* A STECIAL ARC TO HANDLE N-N MODIFIERS WHERE THE
FIRST NOUY IS PLURAL: 'OPERATIONS RESEARCH',
"SYSTEMS ANALYSIS', THIS MIGHT NOT BE R PRODUCTIVE
PRNCESS, IN WHICH CASE THIS ARC IS UNNECES3ARY AND
SHOULD BE REPLACED BY APPROPRIATE COHNPOUND
DICTIONARY ENTRIES.)

(ADDL ADJS (BUILDQ (ADJ +)

N))
(SETR N (BUILDQ (N =*)))
(SETR NU (GETF NUMBER))
(T- NP/N)))

; <WEBBER>ANNGRAM,;23 MON 12~JUN-72 9:5L4LPNM

(NP/NP
(WRD

14

PAGE 1:146

(NULLR NPLIST)

(» THIS ARC STARTS OFF A SERIES OF COMMA-CONJOINED
NP'S, WHICH ARE ANALYZED BY PUSHING FOR NP'S FRUM
WITHIN THE FIRST NP OF THE SERIES,

NPLIST IS ONLY EMPTY FOR THE TOP-LEVEL NP

(THE FIRST ONE) OF THE SERIES, SO THAT ALL NP PUSHES
RRE DONE FROM THE TOP LEVEL, THAT IS, THE SECOND NP
CAN'T PUSK FOR THE THIRD, THE THIRD FOR THE FOURTH,
FTC, AT THL TOP-LEVEL, THE SUBSEQUENT ITEMS IN THE
STRIES ARE COLLECTED IN THE REGISTER BODY,)

(SETR BODY (LIST (NPBUILD)))

(Tv

NP/, })

(CAT LIST T

(» THIS IS R TRICKY ARC--IT RECURSIVELY CALLS THE

PARSER TO ANALYZE THE LIST OF NON-RESTRICTIVE
MODIFIEPS, BEGINNING AT STATE PAREN/ IN THE GRAMMAR,

THE PARSE IS ADDED TO NR, AND IF 1T IS NIL, WE
ABORT,)

(ADDL NR =

(WRD

(» THE ANALYSIS OF THE CURRENT NP HAS BEEN
ESSENTIALLY COMPLETED, A COMMA AT THIS POINT CAN
SIGNIFY THAT THIS IS THE BEGINNING OF A S®RRIES °F
CONJOINKED NP'S (ARC 1), WHILE A PARENTHETIC
EXPRESSION (A LIST) IS INTERPRETED AS A
NON-RESTRICTIVE MODIFIER ON THIS NP

(E.G., 'FIBROUS MATERIALS (ASBESTOS, FIBERGLASS) '),
A COLON CAN ALSO INDICATE THE BEGINNING OF A SERIELS
OF NON.RESTRICTIVE ITEMS (ARC 3). THE NORMAL CASE,
HOWEVER, IS T0 POP THE NP SO FAR ANALYZED,)

{CGND

((NULL (CAR (GETR NR)))
(ABORT)))

(TS NP/HEAD)Y)

.
.

T
(* THIS ARC HANDLES

'"INFORMATION ON THE
FOLLOWING: RADAR,
LASERS,..")

(T> NP/NP:))

-e

<WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PHN PAGE 1:17
(* SIMULTANEOUS

INTFRPRETATION OF THE NP
WILL GO ON IF SIFLAG IS

Ts))

(POP (GETR POPVAL

(SETK POPVAL (NPBUILD))

(OR (NOT SIFLAG)
(INTERP (GETR POPVAL))

)

(AND

(NP/NP:

{« CURRENTLY, THE ONLY POSSIBILITY AFTER A COLON AT

THE END OF A NP IS ANOTHER NP
(PERHAPS A CONJUNCTION OF NP'S))

(PUSH NP/ T
(ADDL NR =)
{T> NP/NP)Y))

(NP/ORD
(CAT (QUANT INTEGER ADV COMNMP)

(PUSH QUANT/
IF PRESENT, HAS BEEN

(*« AN ORDINAL INDICATOR,
ANALYZED, AN OPTIONAL QUANTIFIER CAN FOLLOW:
MEN', 'MANY PLANES'., THE QUANTIFIER IS ADDED TO

POSTARTICLE STRUCTURE,)

'*FIVE
THE

)

(SETR POSTART (BUILDQ (@ + =)

POSTART))

(T> NP/QUANT))
(JUMP NP/QUANT T))

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:5u4PM PAGE 1:18

’

(NP/QURNT
(PUSH PP/ (ASD (WRD OF)
(OR (GETR POSTART

{* THE QUANTIFIER OR ORDINAL

(AND CERTAIN DETERMINERS) CAN BE FOLLOWED BY A
PARTITIVE CONSTRUCTION, AS IN 'THE LAST OF THE
MOHICANS', 'FIVE OF THE BOYS', OR 'HOW MANY OF THE
DOCUMENTS,,.,.,', THE PARTITIVE IS USUALLY INTRODUCED
BY THE PREPOSITION 'OF' (ARC 2), BUT FOR SOME
DETERMINERS (E,G, 'ALL', 'BOTH') THE PREPOSITION MAY
B MISSING (ARC 2); ARC 3 RETRIEVES A PARTITIVE THAT
WAS ANRLYZED AND PUT ON THE HOLD LIST AT STATE
5/--'0F THE BOYS HOW MANY ,..'.

WHEN THERE IS & PARTITIVE, IT IS ADDED TO THE LIST
OF NOUN MODIFIFRS, AND THE HEAD OF THE NP BECOMES
THE DUMMY ELEMENT 'ONES!,)

(WRD (WHICHQ HOWMANY HOWMUCH ALL SEVERAL MOST)
DET)))
(SENDR PARTFLAG T)
(ADDL NMODS =)
(SETR DET "(DETBUILD))
(SETRO N (PRO ONES))
(SETRQ NU S8G/PL)
(T> NP/HEAD))
(PUSH PP/PREP (WRD (ALL BOTH) .
DET)
(SENDRQ PREP OF)
(ADDL NMQDS =)
(SETR DET (DETBUILD))
{SETRQ N (PRO ONES))
{(SETRO NU SG/PL)
(T7 NP/HEAD))
(VIR PP (AND (GETF PARTITIVE)
(CR (GETR POSTART)
(WRD (WHICH(Q HOWMANY HOWMUCH ALL SEVERAL)
DET)))
(SETR DET (DETBUILD))
(ADDL NMODS *)
{TZ NP/HELDPART))
(JUMP NP/DET T
{SETR DET (DETBUILD))))

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PM PAGE 1:19

’

(NP/R
(PUSH R/ (WRD (WHO WHOM WHICH THAT))

(SENDRQ TYPE REL)

(* A RELATIVE CLAUSE HAS BEEN ANALYZED,
THIS MAY BE FOLLOWED (OPTIONALLY) BY ANOTHER FULL

RELATIVF (NOT RKEDUCED),)

(BUILDQ (NP (DET WHR)
+

{NU +}))
N NU))

(SENDR WH

(ADDL NMODS %)
(T. NP/R))
(JUMP NP/NP T))

{NP/SUPERLATIVE
(CAT aDJ (OR (GETR MORE-MOST)
{GETF SUPERLATIVE

(* DEFINITFLY DETERMINED INFLECTED ADJECTIVES PARSE

INTO A HIGHER AND A LOWER NP NODE,
THE® HIGHER NODE CONTAINS THE INFLECTED ADJECTIVE AS

ITS HERD; THE LOWER NODE, THE SET OVER WHICH THE
INFLECTED ARJECTIVE RANGES)

)
(GETF COMPARATIVE))
(SETR N (BUILDQ (@ (N) (%)
#)
(COND

((WRD MORE-MORE-MOST)
(OUOTE (COMPARATIVE)))
(T (QUOTE (SUPERLATIVE))))}))

(SETRQ NU §G)
(SETR DET (RETBUILD))

{(T: NP/SUPERSET))
(JUMP NP/ORD T))

; <WEBBER>ANNGRAM, ;23 MON 12-JUN-72 9:54PHM

(NP/SUPERSET
{PUSH PP/ (WRD (OF AMNONG))
(SENDR V (GETR V)

(* 3EE NP/SUPERLATIVE ; VIR PP ARC ALLTWS
SUPERLATIVEZS TO PICK UP FRONTED PP'S)

)
{ADDL NMODS =)
{SETR HEAD (CADR (GETR N}))
{CND
({OR (NULLR ANAPHORFLG)
(EQ (GETR ANAPHORFLG)
T)
{(SEMNET (GZTR ANAPHORFLG)
(478D (CADDR =*)))))
(T (ADDL NMODS (BUILDQ (PP (PREP OF)
(NP {(DET THE)
(N #)
(NU PL)))
(GETR ANAPHORFLG)))))
(T2 NP/HEAD))
(PUSH PP/PREP (AND STRING (NOT (CAT PREP)))
(! (COND
({GETR ANAPHORFLG)
(SENDRQ DET THE))
{T (SENDRQ DT NIL))})
{SENDRQ NUY' PL)
(SENDRQ PREP OF)
(SENDR V (GETR V))
{ADDL NMODS =*)
(SETR HEAD (CADR (GETR N)))
(T2 NP/HERAD))
(VIR PP (GETF FARTITIVE)
{(ADDL NMODS =)
(SETR HEAD (CADR (GETR N)))
(T. NP/HEAD}Y)
{JUMP NV/HEAD (AND (HOT (WRD OF))
{GRTR ANAPHOQRFLG))
(SETR HEAD (CADR (GETR N)))
(ADDL NMODS (RBUILDQ (PP (PREP OF)
(NP (DET THE)
(N #)
(NU PL)))
(GETR ANAPHORFLG))))
(JUMP NP/HEAD (OR (WKD OF)
(NULLR ANAPHORFLG))))

PAGE 1:29

<WEBBER>ANNGRAM, ;23 MON 12-JUN-72 9:54PM PAGE 1:21

.
’

(NPR/
(MEM (SAMPLE ROCK LINE LINE# APOLLO)
T
(SETR TITLE =)

(*» START OF THE PROPER NOUN NETWORK,
FVENTUALLY, THIS WOULD INCLUDE A FULL GRAMMAR FOR
THE SYNTAX OF PROPER NAMES--TITLES, ABBREVIATIONS,
INITIALS, ETC., CURRENTLY, WE RECOGNIZE CERTAIN WORDS
AS TITLES IF THEY ARF FOLLOWED BY A WORD IN THE NPR
CATEGORY; OTHERWISE, THIS NETWORK WILL ONLY
RECOGNIZE ISOLATED NPR WORDS AS PROPER NOUNS,)

(TT NPR/TITLE))
(CAT NPR T

(SETR NPR (LIST =*))

(T~ NPR/NPER)))

(NPR/NPR
(POP (BUILDQ (@ (NPR)
+)

NPR
(# END OF THE PROPER NOUN NETWORK,
ARC 1 POPS THE APPROPRIATE STRUCTURE;
ARRC 2 TINSURES THAT THE SYSCONJ FACILITY WILL NOT BE
INVOKED AT THIS LEVEL, THAT IS, THAT A CONJUNCTION
OF NPR'S WILL RE RNALYZED AS A CONJUNCTION OF WP'S
WITH NPR HEADS, NOT AS A SINGLE NP WITH A CONJOINED
NPR HEAD.)

)

)

(CAT CONJ NILY)

(NPR/TITLE
(CAT NPR T
(SETR NPR (BUILDQ (+ =)
TITLE)

(» HERE IF A TITLE WORD WAS FOUND,
PICK UP THZ FOLLOWING NPR AND BUILD THE CORRECT

STRUCTHNPE,)

)
{7 HPR/NPR)))

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 g:54P0 PAGE 1:22

(NPU/;
(CAT CSNJ (OR (NULLR CONJ

(« HERE IF A ';' WAS FOUND IMMEDIATELY AFTER THE
SUBJECT NP, THIS MARKS THE SENTENCE AS A NOUN-PHRASE
UTTERANCE CONSISTING OF A SEQUENCE OF CONJOINED
NP'S, (SEMI~COLON CONJOINING IS NOT ALLOWED WITHIN
THE NP'S OF A REGULAR SENTENCE.,) THE STRATEGY HERE
IS SIMILAR TO THAT USED FOR SEMI-COLON CONJUNCTION
AT THE END OF FULL SENTENCES

(STATES 5/; AND S/;S) AND SOMEWHAT RESEMBLES THE
OPERATION OF COMMA-CONJOINING WITHIN NP'S

(STATES NP/, AND NP/,NP))

{EQ = (GETR CONJ)}))Y)

(COND

((NULLR CONJ)

(SETR CONJ =*)))
(T2 NPU/3))
(PUSH NP/ T

(ADDL NPU =)
(TO NPU/;NP)))

(NPU/; NP
(WRD ; T
(TG NPU/;

{* A SEQUENCE OF SEMICOLON-CONJOINED N2'S IN AN NPU
CAN BE FOLLOWED BY A ';', INDICATING THAT ANOTHER
ITEM IS TO FOLLOW, OR ELSE THE END OF THE STRING
MUST HAVE BEEN REACHED, IN WHICH CASE THE FINAL NPU
STRUCTURE IS BUILT,)

))
(POP (BUILDQ (S NPU (m (NP #)
®))
(COND
((GFTR CONJ))
(T (QUOTE 0OR)))
(REVERSE (GETR NPU)))
(NULL STRING)Y))

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PM PAGE 1:23

(PAREN/
(PUSH Np/ T
(SETR PAREN =

(#» THIS IS THE INITIAL STATE FOR THE GRAMMAR WHICH
ANALYZES POST NOMINAL PARENTHETIC EXPRESSIONS,
CURRENTLY, ONLY A NOUN-PHRASE CAN OCCUR AS SUCH A
NON-RESTRICTIVE MODIFIER, BUT THE GRAMMAR SHOULD BE
EXPANDED HERE TO INCLUDE SEQUENCES OF ADJECTIVAL

PHRASES,)

(TC PAREN/PAREN)))

(PAREN/PAREN
(POP (GETR PARENM)

T

{#» THE FINAL STATE OF THE PARENTHETIC-EXPRESSION

GRAMMAR; JUST POP WHATEVER WAS IDENTIFIED,
OF COURSE, WE MUST HAVE EXHAUSTED THE STRING WITHIN

THE PARENTHESES.)

))

(PP/
(CAT EREP T
(SETR PREP =

(= FIRST STATE OF THE PREPOSITIONAL PHRASE NETWO.RK,
ALL PUSHES TO THIS STATE MAKE SURE THAT THE CURRENT
WORD IS A PREPOSITION, SO WE CAN OMIT THE TEST

HERE.)
(I PP/PREP)))

(PP/NP

(SPOP (BUILDQ (PP (PREP +)
+)
PREP NP

(= HERE AFTER THE PREP AND NP HAVE BEEN FQUND,
THE PP STRUCTURE IS BUILT AND SPOPPED, THAT IS,
POPPED TO THE LEVEL DETERMINED BY THE SELICTIVE

MODIFIER PLACEMENT FACILITY,
SINCE THE DICTIONARY DOES NOT YET CONTAIN SHP

FCATURES, THE DEFAULT PLACES THE PP IN THE LOWEST
CONSTITUENT IT CAN BELONG TO,)

™))

B.25

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PNM PAGE 1:24

’

(PP/PREP
(WRD = T
(T- PP/PREP {» AFTER PICKING UP THE
#REP, FIND THE NP
CREPOSITICNAL OBJECT,))

t ot

(* IF THE PREP IS FOLLOWED BY ':', SKIF PAST IT AND

LOOK FNR THE OBJECT IN THE REGULAR WAX,
E.G, 'INFORMATION ON: RADAR, LASERS,..' IS PROPERLY

ANALYZ¥D IF THE COLON IS IGNORED.)

{CAT QDET (NULLR TYPE
(= THE CAT QDET AND CAT QWCRD ARCS CATCH QUESTICNS
IN FRONTFEL PP'S, E,G6, "IN WHICH...")

(SETR DET =)
(T PP/ODET))
(CAT OWORD (NULLE TYPE)
(SETR NP =)
(LIFTR NP (G®TR NP))
(TO PP/NP))
(PUSH NP/ T
(t (COND
((GETR PARTFLAG

(*# WE MUST PASS INFORMATION FROM A HIGHER NP INTO
THE NP WITHIN THE PP INDIRECTLY)

(SENDR PARTFLAG T))))
(SENDR RELVPFLG (GETR RELVPFLG))
(SENDR V (GETR V))
(SENDR DET (GETR DET))
{(SENDR NU' (GETR NU'})

(= NORMALLY, THs OBYECT OF THE PRLP WillL BL FQUND AS
AN ORDINRRY NP STARTING AT THIS STRING POSITION,)

’

<WEBBER>ANNGRAM, ;23 MON 12-JUN-72 9:5u4PM PAGE

{SETR NP «)
(TC PP/NP))
(VIR NP 7T

(*» THE OBJ:CT MIGHT HAVE BEEN FRONTED, FOR EXAMPLE,
BY RELATIVIZATION OR PASSIVIZATION, LEAVING A
DANGLING PREPOSITION ('THE STORE I BOUGHT IT IWN
eee')s IF S0, THE OBJECT HAS BEEN PLACED ON THE HOLD
LIST BY PREVIOUS STATES, AND THIS ARC RETRIEVES IT,
THE RESUME ACTION IS NECESSARY TO DEAL WITH A
RELATIVE CLAUSE EXTRAPOSED FROM THE FRONT®ED OBJECT
AND LEFT IN THIS POSITION ('THE STORE I BQUGHT IT IN

WHICH USUALLY HAS GOOD PRICES,..'))

(RESUME)
(SETR NP »)
(T PP/NP))
(VIR ADV (AND (WRD WHERE (CADR *))
(WRD (FROM TO AT)

PREP))

(* IF THE DANGLING PREP IS A LOCATIVE ONE AND THE
WORD 'WHERE' WRS FOUND AND HELD BY PREVIOUs STATES
(f.G. $/) WE RETRIEVE IT HERE AND BUILD THE
APPROPRIATE PP STRUCTURE,)

(SETR NP (BUILDQ (NP (DET WHQ)
(N PLRCE)

(NU SG)Y)))

(T2 PP/NP))
(VIR DV (AND (WRD WHEN (CADR #*))
(WRD AT PREP))

(* IF WE HAVE & DANGLING TEMPORAL PREP AND WE
PREVIONSLY ENCOUNTERED AND HELD 'WHEN', W= BUILD A
TIME PP,)

{SETR NP (BUILDO (NP (DET WHQ)
(N TIME)

(NU 5G))Y))
(T> PP/NPY))

B. 27

1:25

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:5u4PHN PAGE 1:28

’

(PP/QDET
(PUSH NP/ART T
(SENDR DET (GETR DET)

(*» PUSH FOR THE REST OF THE NP FOLLOWING THE QDET IN

THE FRONTED PP, E.G.
"IN WHICH SAMPLES DOES STRONTIUM OCCUR?"™)

)
(SETR NP #)
(LIFTR NP (GETR NP))
(TC PP/NP)))

(QUANT/
(CAT cOMP (NULLR ADV

(* START OF QUANTIFIER NETWORK FOR NP DETRRMINER
STRUCTURE, QUANTIFIER CAN INCLUDE A COMPARATIVE
(*MORE THAN') OR ELSE JUST BEGIN WITH AN INTEGER OR
A WORD IN CATEGORY QUANT, CURRENTLY, MOST WORDS IN
THIS CATEGORY ARE ALSO IN CATEGORY DET, SO THEY
APPEAR AS DETERMINERS IN THE FIRST PARSES,)

(SETR ADV =)

(TO QUANT/))
(CAT QUANT T

(SETR NUMB =)

(TC QUANT/QUANT))
(CAT INTIGER 7T

(SETR NUMB =)

{(TC QUANT/QUANT)))

(QUANT/QURANT
(TST UNIT-TST (MARKER UNIT =)
(SETR UNIT =

(*» AFTER THE QUANTIY¥IER HAS BEEN PICKED UP, A UNIT

OF MEASURE CAN BE SPECIFIED
(*FIVE GALLONS', 'MORE THAN 3 MMN'), FOTENTIAL UNITS
HAVE A UNIT MARKER, WHICH IS TESTED ON THE ARCS FROM

THIS STATE,

(SETRQ FLAG MUCH)
TC QUANT/UNIT))

(JUMP QUANT/UNIT (NOT (MARKER UNIT =*))
(SETRO FLAG NANY)))

.

7 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PN PAGE

’

(QUANT/UNIT
(POP (COND
((GETR ADV)

(BULLDQ ((COMP (ADV +)
(@ (NP (INTEGER +))

#))

+)
ADV KUMB (COND

({GETR UNIT)

{BUILDQ ((UNIT +))
UNIT))

(T NIL))

FLAG)

{« END OF QUANTIFIER NETWORK;

RUILD THE CORRECT STRUCTURE,
IF A UNIT IS PRESENT, THE STRUCTURE IS FLAGGED WITH

THE WORD 'MUCH', OTHERWISE 'MANY',
ALSO, IF THERE WAS A COMPARATIVE, THE ROOT OF THE
CUANTIFIER STRUCTURE IS THE NQDE 'COMP',)

)
(T (BUILDQ ((@ (NP (INTEGER +))

#)
+)
NUMB
(COND
({GETR UNIT)
(BUILDQ ((UKIT +))
UNIT)))
FLAG)))

TY)

(R/
(MEM (WHICH THAT WHO)
T
(TC R/WH

(* START OF KELATIVE CLAUSE NETWORK, GIVEN THAT WE

ARE LOOKING AT A RELATIVE PRONOUN
('WHO', 'WHAT', 'WHICH') OR A PREP FOLLCWED BY A

RELATIVE PRONOUN,)

)
(WRD WHCM T

{» FOR 'WHOM', WE KNOW THAT THE WH-NP IS NOT THE
SUBJECT OF THE RELATIVE CLAUSE--WE HOLD IT TO BE
PICKED UP LATER.)

1:27

; <WEBBER>ANNGRAM,.;23 MON 12-JUN-72 9:54PNM PAGE 1:28

’

(HCLD (GETR WH))
(SETR WH NIL)
{T" R/WH))

(PUSH NP/ (WRD WHOSE)

(* 'WHOSE' MEANS THAT THE WH-NP IS A POSSTYSIVE FOR
AN NP AFTER THE 'WHOSE!')

(SENDR ADJS (BUILDQ ((POSS +))
WH))
(SETR WH =)
(TC R/WHY))
(CAT PREP T
(SETR PREP =)
(TC R/PREP)))

(R/NIL
(CAT Vv T

(CUND
((AND (GETF PASTPART

{» HEREZ TO LOOK FOR A REDUCED RELATIV&--WITHOUT A
RELATIVZ PRONOUN, DETERMINE THE TYPE OF S:uNTENCE,
DISPUSE OF THE WH-NP PROPERLY, THEN TRANSFER INTO
THE CORRECT PLACE IN THE S/ GRAMMAR TO ANALYZE THE
REST OF THF CLRUSE,)

(VPASSIVE »*))

(HOLD (GETR WH))
(SETR SUBJ (BUILDQ (NP (PRO SOMETHING)))

{(* A PRESENT PARTICPLE MEANS THE RELATIVE CLAUSE IS
A PROGRESSIVE SENTENCE WITH THE WH-NP AS SUBJECT;

A PAST FARTICIPLE MEANS THE RELATIVE CLAUSE IS
PASSIVIZED, AND THE WH-NP IS HELD RS THE SUBJECT OF

A PASSIVE SENTENCE USUALLY IS AT STATE VP/V,)

)
(SETR AGFLAG T))
((GETF PRESPART)
(SETR SUBJ (GETR WH))
(SETRQ ASPECT (PROGRESSIVE)))

(T (ABORT)))
(SETR V =)
(TD VB/V))
(PUSH NP/ T

(=« AN HP HERE I35 THE SUBJECT OF THE RELATIVE CLAUSE;

THE WH-NP IS EITHER THE OBJECT, INDIRECT OBJECT, OR
PREP OBJECT--HOLD IT UNTIL WE CAN DETERMINE WHICH,)

B.30

’»

<WEBBER>ANNGRAM, ;23

(H2LD (GETR WH))
{SETR SUBJ =»)
(T S/NP))

({WRD THERE T
(SETRQ THERE T)
(SETR SUBJ (GETR WH))
(T S/NP))

(CAT aDJ T

{» POST-NOMINAL ADJECTIVES ARE PROCESSED A5 REDUCKED

REZLATIVE COPULAR SENTENCES,
'INFORMATION AVAILABLE® IS ANALYZED AS 'INFORMATION

WHICH IS AVAILABLE')

(SETR SUBJ (GETR WH))

(SETRC V BE)
(SETR 0BJ (BUILDQ (@ (ADJ)

(*)
)
FEATURES))
(TQ VP/NPY)
(CAT ADV T
(ADDL VMODS (BUILDQ (ADV =*)))
{(T™ R/NIL)Y))
(R/PREP
(MEM (WHICH WHOM)
T

(ADDL VMODS (BUILDQ (PP (PREP +)
+)

PREP WH)

(* LOOKING AT RELATIVE PRONOUN AFTER THE PREP,

IF THE R2LATIVE PRONOUN IS 'WHICH' OR 'WHAT, THE
WH-NP IS THE ORJECT OF THE PREP,

FOR 'WHOSE', THE PREP OBJECT IS A NP BEGINNING WITH
'"WHOSE' AND HAVING THE WH-NP AS A POSSESSIVE
MODIFIER, IN EITHER CASE, A PP IS BUILT AND ADDED TO
THE VERB MODIFIERS OF THE RELATIVE CLAUSE,

THIS STATE ALSO GETS THE STRING IN PHASE WITH PATHS

THAT WENT DIRECILY FROM R/ TO R/WH,)

MON 712-JUN-72 g:buPkH PAGE 1:29

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:5u4PHM

)
(SETR WH NIL)
(TL R/WH))
(PUSH NP/ (WRD WHOSE)

(SENDR ADJS (BUILDQ ((POSS +))
WH))

(ADDL VMODS (BUILDQ (PP (PREP +)

*)

PREP))

(SETR WH NIL)

(TC R/WH)))

(R/WH
(PUSH PP/ (CAT PREP)
(ADDL VMODS =)
(TO R/WH))
(PUSH NP/ (NOR (CAT V)
(GETR RELVPFLG))
(CTND
((GETR WH)
(HOLD (GETR WH))))
(SETR SUBJ =)
(TT S/NP))
(WRD THERE T
(SETR THERE T)
(SETR SUBJ (GETR WH))
(TS S/NP))
(JUMP S/NP (AND (GETR WH)
(CAT V))
(SETR SUBJ (GETR WH))))

(S/
(JUMP S/Q (QSTART)

PAGE 1:39

HL I He LNL 1AL A &L F HE R LE UG ANMA

BASICALLY, THIS STATE TRIES TO DECIDE WHAT TYPE OF
STNTENCE WE HAVE: QUESTION, INTERROGATIVE, OR
INPERATIVE. THEY ARCS SET THE TYPE REGISTER AND
TRANSFER TO STATES DESIGNED TO HANDLE THE LIFFERENT
CONSTRUCTIONS, CERTAIN VERE MODIFIERS MAY OPTIONALLY
PRECEDE THZ MAIN BODY OF THE SENTENCE AND PARTITIVE
CONSTRUCTIONS MAY HAVE BEEN FRONTED FROM A NOUN
PHRASE; THESE CONSTITUENTS ARE ANALYZED BY LOOPING
THROUGH S/.)

{* QSTART IS TRUE FOR THE SMALL SET OF WORDS THAT
CAN START QUESTIONS.)

.
14

<WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PH PAGE 1:31

(SETRC TYPE Q))
(WRD PLEASE (NULL STACK)
(* AT THE TOP LEVEL,
'"PLZASE' USUALLY
SIGNIFIES THE BEGINNING
OF AN IMPERATIVE,)

(ADDL VMODS (BUILDQ (ADV PLEASE)))

(TO S/IMP}))
(JUMP S/IMP

(* AN IMPERATIVE CAN OCCUR ONLY AT THE TOP LEVEL;
IT USUALLY BEGINS WITH AN UNTENSED VERB: 'GIVE ME

.I.')

(AND (CHECKF V UNTENSED)
(NULL STACK)))

(JUMP S/DCL (NOR (QSTART)
(CAT PREP)

(NULL STRING))

(» THE BZST TEST FOR THE BEGINNING OF A DECLARATIVE
IS THAT IT NOT BE THE BEGINNING OF A QUESTION,)

(SETRQ TYPE DCL))
(CAT ADV (RFEAT NEGADV)

(« A NEGATIVE ADVERE ('HARDLY', 'BARELY') USUALLY
INVOLV?S SUBJECT-VERB INVERSION WHEN IT OCCURS AT

THE BEGINNING OF A SENTENCE,
TH® TYFE 1S STILL 'DCL', BUT WE GO TO STATE S/NP TO

PICK UP THE VERB FOLLOWING THE ADVERB
(*RARELY HAD H®E LEFT ,.,'), SUBSEQUENT ANALYSIS

RESEMBLES THE PROCESSING OF YES-NO QUESTIONS,)

(1xDDL VMODS (BUILDQ (ADV =)))
(SETRQ TYPE DCL)
(T" S/NP))

{(CAT ADV T
{(ADDL VMODS (BUILDQ (ADV =)))

(T° S/))
(PUSH PP/ (WED OF)

{(«» A PRRTITIVE EXPRESSION MAY HAVE BEEN FRONTED
('OF THE MEN HOW MANY ,,,'). ANALYZE 1T HEZIRE, BUT
HOLD IT (WITH THE FEATURE 'PARTITIVE') TO BE PICKED
Up AT STATE NP/QUANT IN THE FIRST NP,)

;7 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PM PAGE 1:32

(HCLD = (QUOTE ((PARTITIVE))))

(TC §8/))
(PUSH PP/ (CAT PREP)

(« IF THERE IS A QWORD OR QDET IN THE OBJZCT OF THE
PP, IT BECOMES THE DS SUBJECT IN S/QP1)

(HOLD * (QUOTE ((FRONTED))))
(TC S/QP1)))

(573
(CAT CONJ (OR (NULLR CONJ

(» A '3' WAS FOUND AT THE END OF THE TOPeLEVEL S,
INDICATING A SEQUENCE OF SEMICOLON CONJOINED
SENTENCES, WITH REAL CONJUNCTIONS POSSIBLY FOLLOWING
THE SEMICOLONS, WE PICK UP THE CONJS IF PRESENT, AND
PUSH FOR THE FOLLOWING S, WE KEEP THE SEQUENCE OF
5'S IN SBODY, NOTE: THE STRATEGY HERE IS ALSO USED
FOR SEMICOLON CONJOINED NPU'S,)

(EQ » (GETR CONJ)))

(s« IF WE FIND A CONJ, EITHER IT MUST BE THE FIRST
ONE ENCOUNTFRED CONJOINING THE S§'S, OR 1T MUST BE
THE SAMF AS PRFVIOUSLY ENCOUNTERED ONES,

THUS WEg ACCEPT 'S; AND S; AND S' AND 'S5,

S; AND S', BUT NOT 'S; OR 83

AND §')

(SETR CONJ =)

(T> 5/3))
(PUSH S/ T

(ADDL SBODY =)

(T §/38)))

N—

; <WEBBEE>ANNGRAM,;23 MON 12-JUN-72 9:54PH

’

(S/;5S
(WRD ¢ T

(« HERE AFTER PROCESSING OWNE S LN A SERIES OF
SCrMICOLON CONJOINED S'S, IF THE CURRENT WOQRD IS ';',
THEN ANOTHER S OR CONJ FOLLOWS--GO TO STATE S/;.
OTHERWISE, POP A COORDINATE LIST OF THE IDENTIFIED
S'S, NOTE: IF THE END OF THE SERIES IS REARCHED WITH

NO CONJ, THE DEFAULT CONJ IS 'OR',)

))
(POP (BUILDQO (@ (S #)
#)
(COND
({(GETR CONJ))
(T (QUCTE OR)))
(REVERSE (GETR SBODY)))

TY)

(S/AUX
(CAT NEG (NULLF NEG)

{» HERE AFTER FINDING THE FIRST VERB, WHICH MIGHT
HAVE BEEN THE MAIN VERB OR AN AUXILIARY,

LOOP FOR AN OPTIONAL NEG ('NOT') AND UNDC
'DO-SUPPORT' IF NECESSARY, THEN IF WE ALREADY HAVE
THE SUBJECT, GO TO VP/V IF IT AGREES WITH THE VERB;
TF &F HAVEN'T IDENTIFIED THE SUBJECT
{BECAUS® NDF SURJECT-VERB INVERSION)

TO FIND ONE,)

GO TO s5/NO-SUBJ

(CUND
((WRD DO MODAL)
(SETR MODAL NIL)))
(SETRC NEG NEG)
(T< s/AUXY)
(JUME VP/V (OR (AND (GETR SUBJ)
(PNCHECK (GETR SUBJ)
(GETR PNCODE)))

(GETR THERE)))

(JUMP S$/NO-SUBJ (NOR (GETR SUBJ)
(GETR THERE))))

PAGE 1:33

; <WEBBER>ANNGRAM,;23 MON

’

(S/DCL
(WRD THERE T
(SETR THERFE T)

(* WE THINK THIS IS A DECLARAIIVE SENTENCE,

IT MUST BEGIN WITH A SUBJECT NP, A SUBJECT
COMPLEMENT ('TO HAVE THE INFORMATION IS IMPORTANT'),
OR 'THERF' IF THERE-INSERTION HAS OCCURRED

{WE MUST LATER FIND 'BE' OR 'EXIST'))

(TC S/NP))
(PUSH NP/ T

(SETR SUBJ =)

(T S/NP))

(PUSH COMPL/ (OR (WRD (FOR TO THAT))
(AND (WRD TO (NEXIWRD))

(CRT NEG)))
(« THERF ARE 4 TYPES QOF SUBJECT COMPLEMENTS: 'F.R ME
'THRAT I WENT L,..'s» 'TIO GO ..4', '"NOT IO

TO GO---"
COees', THE PUSH IS EERMITTED ONLY IF WE HAVE AN

APPROPRIATE COMPLEMENTIZER,)

(SETR SUBJ =)
(T2 S/NF)))

(S/HOW
(CAT LDJ T
(H2LD (BUILDG (ADJ =)))
(H"LD (BUILDQ (PP (PREP IQ)
{NP (DET WHQ)
(¥ DEGREE)
(NU 8G)))))

(T2 S/NP

(+ RECOGNIZES "HOW<ADJ>IS,,."
AND "HOW <ADV><AUX>.,,", THE ADJECTIVLE, ADVERB AND

THE WCED "HOW™ ARE ALL HELD FOR LATER,)

))
(CAT ADV T
(H2LD (BUILDQ (ADV =*)))

(HZLD (BUILDOQ (PP (PREP TO)
(NP (DET WHQ)

(N DEGREE)
(NU §6G)))))

(TO S/NP)Y)

B.36

12-JUN-72 9:5u4PM PAGE 1:34

7 <WEBBER>ANNGRAM,.;23 MON 12-JUN-72 9:54PM PAGE 1:35

(S/IMP
(CAT V (GETF UNTENSED

(» WE RECOGNIZE AN IMPERATIVE SENTENCE, AND SET UP
REGISTERS ACCORDINGLY, THE SUBJECT IS 'YOU' AND THE
TENSE IS 'PRESENT', WE SET THE V AND GO TO VP/HEAD
TO PICK UP POST-VERB CONSTITUENTS,)

(SETRQ TYPE IMP)

(SETR SUBJ (BUILDQ (NP (PRO YOU))))
(SETR V)

(SETR HEAD =)

(SETRQ TNS PRESENT)

(T> VP/HEAD)))

{S/NO-SUBJ
(WRD THERE (OR (NULLR WHQ

(= THERE WAS NO IDENTIFIABLE SUBJECT BEFORE THE
FIRST VERB, THE SUBJECT MIGHT BE HERE IN THE STRING
IF S-V INVERSION OCCURRED, OR IT MIGHT BE IN THE WHQ

REGISTER,)

(PNCHECK (GETR WHQ)
(GETKk PNCODE)))

{» ANYTHING IN WHQ MUST AGREE WLITH THE VERB AND
BECOMES THE SUBJECT ('HOW MANY MEN WERE THERE...').
IF WHQ IS EMPTY ('WERE THERE MANY MEN,..') WE MCVE
ON TO S/THERE.)

5 <WEBBER>ANNGRAN,;23 MON 12-JUN-72 9:54PM PAGE 1:36

(COND
((GETR WHQ)
{SETR SUBJ (GETR WHQ)))
((GETR WH)
{SETR SUBJ (GETR WH))))
(SETR THERE T)
{TZ S/THERE))
(JUMP VP/V (AND (GFRTR WH)
(WRD HAVE V

(* WE CHOOSE TO MAKE WH THE SUBJECT IF THE VERB IS
“HAVE", RATHER THAN LOOKING FOR ANOTHER NP ON THE

FOLLOWING PUSH NP/ ARC, IF HAVE TURNS OUT TO BE AN
AUXILIARY FOLLOWED BY THE REAL SUBJECT , THIS ARC

WILL FAIL (E.G, IF THE SENTENCE WERE

"HOWMANY PEARS HAVE THE BOYS EARTEN?"))

(PNCHECK (GETR WH)
(GETR PNCODE)))
(SETR SUBJ (GETR WH)))
(PUSH NP/ T

(« WE LOOK FOR AN NP IN THIS POSITION,

IF NPFLARTURES WAS SET (IN THE PUSH FROM STATE
S/ODET) WE PRESERVE THE OLD VALUE BECRUSE THE
RZGISTER WILL RE RESET BY THIS PUSH

(AT STATE NP/HEAD), IF THIS PUSH IS SUCCESSFUL, THE
RESULTING NP MUST AGREE WITH THE VERB AND BECOMES
THE SUBJECT. ONR INDECISION ABOUT THE WHQ IS
RESOLVRD--IT CANNOT BE THE SUBJECT SO IT IS HELD TO
BE PICKED UF AS AN OBJECT OR PREP OBJECT,

WZ ALSO HOLD THE NPFEATURES ASSOCLATED WITH IT, FOR
LATER RESUMPTION, FINALLY, THE DO-SUPPORT NECESSARY
FOR S-Vv INVERSION IS UNDONE,)

B.38

; <WEBBER>ANNGRAM,;23

(! {SETR

HOLDNPFEXTURES (GETR

MON 12-~JUN-72 9:54PH4

NPFERTURES)))

(SENDR ANAPHORFLG (GETR ANAPHORFLG))

(Crwp
((NULL
(ABORT)Y))
(SETR SUBJ =)
(CTND
((GETR WHO)
(HOLD (GETR
(GETR
(COND
((GETR
(HOLD

NH)
(GETR
(GETR

(COND

(PNCHECK =

{GETR PNCODE)))

WHQ)

HOLDNPFEATURES))))

WH)
HOLDNPFEATURES))))

({4FD DO MODAL)

(SETR MODAL
(T VP/V))
(JUMP VP/V (AND

(» IF

)

{PNCHECK

{SETR sUBJ
(JUMP VP/V

(« IF
WHICH AGRETS
SUBJECT.,)

(AND (GETR WHQ)
(PNCHEC

"THERE"
WITH THE VERB,

'THERE!

NIL)))

(GETR WH)
(NOT

(WRD HAVE V

AND NP DIDN'T WGQORK, BUT "“WH"™ AGREES

MAKE THAT THE SUBJECT)

(GETR WH)
(GETR PNCODE)))

{GETR WH)))

NP DIDN'T WORK BUT WE HAVE A WHQ
WE TRY THAT AS THE

AND
WITH THE VERB,

(GETR WHQ)

(GETR PNCODE)))

(SETR SUBJ

(GETR

WHO))))

PAGE 1:37

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:5U4PNM PAGE 1:38

(S/NP

(POP (GETR POPVAL)
(AND (NOR STRING HOLD STACK (GETR VMODS))

(SETR POPVAL (COND
((WRD Q TYPE)
(BUILDQ (S NPQ +)
WHQ))
(T (BUILDQ (S NPU +)
SUBJ))))
(OR (NOT SIFLAG)
(INTERP (GETR POPVAL))))

(» IF WE RcACHED THE END OF THE STRING AT THE TOP
LEVEL, WE BUILD A NOUN-PHRASE UTTERANCE AS THE PARSE
OF THE SENT®RNCE® ('INFORMATION ON ...' OR 'WHICH

MAN'),)

{* HERE AFTER OUR FIRST ARTTEMP AT FINDING A NP,
EITHER AS & DECLARATIVE SUBJECT OR AS A QUESTION

WORD (WHQ).)

(*# WE ATTEMPT

SIMULTANEOUS
INTFRPRETATION IF SIFLAG
IS T.))
(CAT ADV T
(ADDL VMODS (BUILDQ (AbLV =)) (* AN ADVERB MAY PRECEDE
AN AUXILIARY VERB)
)
(T2 S/RE))

(CAT V

({GETF TN3)

/#+ USUALLY WE FIND A TENSED VERB AT THIS STRING
POSITION, £ITHRR AS THE FIRST WORD IN A QUESTION
(IF WE JUMPED FROM S5/Q), Ok FOLLOWING AN NP OR
'"THERE', IF IT IS A MODAL ('WOQOULD', 'COULD', ETC.)
Wz PUT TIT IN THE MODAL REGISTER, OTHERWIS®T IN V,
IF WE ARE IN A WH-QUESTION AND THE VERB WAS NOT AN
RUXILIaARY ('WHO HIT JOHN') THEN THE WHQ IS THE
SURJECT, IN ANY CASE, SAVE THE TENSE AND
PTRSON-NUNBER CODE,)

5 <WEBBER>ANNGRAM,;23 MON “2-9UN-72 9Y:54PN PAGE 1:39

’

(COND
((MODAL)
(SETK MODAL =))
(T (SETR Vv *)))
(CCND
((AND (GETR WHQ)
(NOR (MODAL)
(WRD (HAVE BE))))
(SETR SUBJ (GETR WHOQ))
(SETR WHQ NIL)))
(CCND
((AND (GETR WH)

(NOR (MODAL)
(WRD (HAVE BE D0))))

(SETR SUBJ (GETR WH)

(#« IF WE ARE IN A QREL CLAUSE AND THE VERB WAS NOT
AN AUXILIARY, THE THE WH PASSED DOWN FROM THE MATHIX

SENTENCE IS THE SUBJECT,)

)
(SETR PNCODE (GETF PNCODE))

(TO S/AUX)Y))
{SETR TNS (GETF TNS))
(SETR PNCCDE (GETF PNCODE))
(TC S/AUX)Y)
(WRD 3 (NULL STRACK)

(*» AT THE TOP LEVEL, A SEMICOLON HEKE INTRODUCES A
STOUENCE OF NP'S TO BE PARSED AS CONJOINED NPU'S,
THE GRAMMAR FOR THIS BEGINS AT NPU/;

(4DDL NPU (GETR SUBJ))
{T7 NPU/;))
(JUMP S/DCL (WED IDQ TYPE)

(* WE AFE IN AN INDIRECT QUESTION, PUSHED TO FROM
VP/HEAD ('I KNOW WHO YOU ARE') THE WHQ REGISTER IS
SET, BUT INVERSION HASN'T OCCURRED, I1,E., THE
BEGINNING OF THE CLAUSE AFTER THE Q-WOURD LOOKS LIKE
A DECLAFARTIVE, ERGC, JUMP TO S/DCL.)

(H°LD (GETR WHQ)
(GETR NPFEATURES))

{SETR WHQ NIL))
(JUMP S/AUX (GETR V)))

B.41

5 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PN PAGE 1:40

(579
(WRD HZW T
(T2 S/HOW)

(* THE SENTENCE BEGINS LIKE A QUESTION,
FOUR POSSIBILITIES: (1) A OWORD--A WH WORD THAT
FUNCTIONS AS A PRONOUN ('WHO','WHAT');

(2) AN AUXILIARY VERB; (3) A Q-DETERMINER
('*WHICH MAN'); (u4) THE ADVERB "HOwW")

({CAT OWORD T

(« THE DICTIONARY ENTRIES FOR QWORDS ARE COMPLETE NP
OR ADVERBIAL STRUCTURES, W& COPY THEM SO WE DON'T
DESTROY THE DICTIONARY ENTRIES BY FUTURE OPERATIONS,
THE FEATURE 'SUBJ/0OBJ' INDICATES THAT THE QWORD CAN
REPRESENT EITHER THE SUBJECT OR THE OBJECT, SO WE
STORE IT IN WHO UNTIL FURTHER INFORMATION ENABLES US
TO DECIDE, IF THE QWORD LACKS THIS FEATURE, THEN 1T
CANNOT BE THE SUBJECT ('WHOM'); WE HOLD IT FOR
POST~-VERBAL PROCESSING,)

(COND
((GETF SUBJ/OBJ)
(SETR WHQ (COPY =*)))
{T (HOLD (COPY =*))))
(COND
((GETF ANAPHORIC)
({SETRO ANAPHORFLG T

(* THE QWORD "WHICH"™ IS ANAPHORIC: IT IMPLIES CHOICE
FROM A PREVIOUSLY MENTIONED SET,

THE OWORD "WHAT" IS NOT, ANAPHORFLG SIGNALS THIS
DISTINCTION ANC WILL BE USED IF THE SENTENCE
CONTAINS A SUPERLATIVE ADJECTIVE T0O DETERMINE THE
5z THAT IT NEFLS,)

1))
(T S/NP))
(JUMP S/NP (Ca™ V))
(CAT CODET T

(» CURRINTLY, THE NP/ LEVEL DOES NOT PROCLCSS
QUESTION DETERMINERS, WE PICK THEMN UP HERE AND PUSH
INTO THE MIDDLF OF THE NP/ NETWORK FRUM S/QDET,
SCNDING THx QDET DOWN,)

(SETF DET »)
(T” S/QDET)))

; <WEBBER>ANNGRAM,; 23 MON 12-JUN-72 9:54PN PAGE 1:41

’

(S/QDET
(PUSH NP/ART T
(! (COND
({NEQ (CAR (GETR DET)
(* DET CONTAINS THE O-DETERMINER FOUND AT STATE 5/0Q.
WE PUSH INTO THE MIDDLE OF THE NP/ NETWORK TO FIND
THE WHC NOUN-PHRASF. WE INITIALIZE THE REGISTER ODET
T0 PREVENT REDUCED RELATIVE CLAUSES WITHIN THE NP:
'"THE MAN I SAW.,..' AND 'HOW MANY MEN WHO I SAW.,..'
ARE ALLOWED, BUT 'HOW MANY MEN I SAW...' IS OUT.)
)
(QUOTE POSTART))
(SENDRQ RELVPFLG T
(* WE DO NOT RELATIVIZE THE REMAINDER OF THE
SENTENCE IF THF QDET WAS "HOW MUCH™)
Y1)
(SENDR DET (GETR NET))
(SENDRQ QDET T)
(SETR WHQ =)
{T. S/NP)))
(§/QP1

(VIR PP (GETR NP)
(SETR WHP (RELATIVIZE (COPY x)

’

(* WE MAKE A QUESTIONED NP OR QWORD IN A FEONTED PP
THE DEEP STRUCTURE SUBJECT)

1)

(SETRD TYPE Q)
(T~ S/QP2))
(JUMP S/ (NOT (GETE NP))))

(S/QP2
(PUSH Ssnp T
(SENDR VMODS (LIST (GEIR WHP)))

(* WH-OCUESTIONS ARE PARSED AS NOUN PHRASE UTTERANCES
WITH THE QUESTION-NP AS SUBJECT AND THE REST OF THE
QUESTION IN A RELATIVE CLAUSE ON THE SUBJICT,

THE TYPFE OF THE RELATIVE CLAUSE IS QREL TO
NISTINGUISH IT FROM A SURFACE STRUCIURE RELATIVE,

A WHQ REGISTER IS USED INSTEAD OF A SUBJ REGISTER TO

HOLD THE SUBJECT.)

7 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PN PAGE 1:42

(SENDRQ TYPE QREL)
(SETR WHQ (APPEND (GETR NP)

(LIST »)}))
(TC S/VP))Y)
(S/5
(POP (GETR POPVAL)
T
{* POPVAL MAY HAVE BEEN
INTFRPRETED IN S/vVP)))
(S/SADYV

(PUSH NP/ T
(ADDL VMODS (BUILDQ (RDVP (ADV +)
*)
SADV))
(TS s/VP)))

(S/THERE
(TEST DO T
(SETQ FEATURES (GETR NPFEATURES)

(*» THIS STATE IS PLACED BETWEEN S/NO-SUBJ LND VE/V
TO ALLOW POR EXTRAPOSED RELATIVE CLAUSES WITH THERE
INSERTION IN QUESTIONS: 'HOW MANY MEN WERT THERE WHO
BOUGHT ,,,', THE RESUMF ACTION WILL MOVE THE
RELATIVE TO ITS PROPER LOCATION IN THE NP, WHICH
THEN BECOMES THE SUBJECT, NOTICE THAT UNLESS
NPFEATURES HAS BEEN SET, THIS ARC IS ESSENTIALLY A
NO-OP, THUS, SINCE QWORDS DON'T SET NPFEATURES
(QDETS DO), 'WHO WAS THERE WHO DID ,..' IS

{PERHAPS ERRONFOUSLY) NOT ALLCWED.,)

)
(RESUNME)
(COND
({GETR NPFEATURES)
(SETR SUBJ =)))
(JUMP VEB/V)Y))

B.A4

; <WEBBEBR>ANNGRAM,;23 MON 12-JUN-72 9:54PHM PAGE

1

(S/vp
(WRD , T
(TC S/VP

{* HERE WH®EN THE VERB-PHRASE OF THIS S HAS BEEN
NEARLY COMPLETED, THERE MIGHT BE SOME ADVERBS OR
PP'S STILL ON THE HOLD LIST, WHICH WE PICK UP HERE,
ALSO, AT THE TCP LEVEL, THERE MIGHT BE SOME TERMINAL
PUNCTUATION, OR A SEMICOLON, INDICATING THAT THIS IS
THE FIRST ITEM IN A SERIES OF CONJOINED S'g,

THE USUAL CASE, HOWEVER, IS TO POP THE ANALYZED S

STRUCTURE,)

))
(CAT ADV (RFEAT TRANSADYV)
(SETR SADV =)
{(T” 5/SADV))
(VIR PP T
{ADDL VMCDS »)
(T S/VP))
(VIR aDJ (RFEART COPUL:n V)
{SETR V (BUILDQ (® (ADVJ) (*)
#)
(COND
((WRD (APPEAR SEEM)
V)
(QUOTE (SEEMING)))))

PICKED UP IN S/HOW RE-LACES THE

LF THE COPULA WAS "AFPZAR" OR
"SEEMING"™ IS ADDEL TO THE NEW

f« THE ADJZCTIVE
COPULA AS DS VLRB.
“"SEEM", THz FEATURE
VIRB,)

)
{TT S/VP))
(VIR AiDV T
(ADDL VMODS =)
(T~ S/VP))
(KEM (%, 2 %)
(NULL STACK)

(« NOTE THAT A TERMINATING QUESTION MARK QVERRIDES
THE SYNTACTIC TYPE OF THE SENTENCE: 'l NEED SOME
INFORMATION?' IS A QUESTION, NOT A DECLARATIVE,)

7 <WEBBED>ANNGRAM,;23 MON 72-JUN-72 G:5U4PM PAGE 1:44

(COND
((AND (WRD ?)
(NOT (WRD Q TYPE)))
(SETRQ TYPF Q)))
(TO S/VP))
(WRD ; (NULL STACK)
(ADDL SBODY (SBUILD))

{(TJ> 8/3))
(JUMP S/S T
(SETR POPVAL (SBUILD) (*» THIS ARRC ALLOWS FOR
SIMULTANEOUS
INT*RPRETATION IF SIFLAG
IS T.)
)
(COND
({OR (NOT SIFLAG)
(WRD REL TYPE))
)
((AND (OR STACK (NOR STRING HOLD))
(NOT (INTERP (GETR POPVAL))))
{SUSPEND 23))))
ADJ
(WRD THAN (COMPARATIVE V (* VF/ADJ PROCESSES THE

COMPLEMENTS OF PREDICATE
ADJTCTIVES, E.G, THE
INFINITIVE ON
“JOHN IS EASY TO PLEASE"
)
T2 VP/ADJ-COMP))
(PUSH COMPL/ (AND (COMPARATIVE V)
(WRD THAN))
(SETR CONMPL =)
(T3 S/VP))
(PUSH COMPL/ (AND (WRD (FOR TO THAT))
(EQUAL (GETR SUBJ)
(QUOTE (NP (PRO IT)
(NU SG)))))
{SETR SUBJ =)
(T2 S/VP))
(PUSH COMPL/ (AND (WRD FOR)
(RFEAT FORCOMP (CADR (GETR V))))
{SETR COMPL =)

(T2 S/VP))
(PUSH FOR/NP (AND (RFEAT TOCOMP (CADR (GETR V)}))
{WRD TO))
(! (COND

((RFEAT SUBJLOW (CADR (GETR V)))
(SENDR SUBJ (GETR SUBJ)))
(T (SENDR SUERJ (QUOTE (NP (PRO SOMETHING)
(NU SG))))
(SENDR 0BJ (GETR SUBJ)))))
(SETR COMPL #)
(TC S/VP))
(JUMP VP/VP T))

;7 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PNM PAGE

(VP/ADJ-CCMP
(PUSH NP/ T
(SENDR V (GETR V))
(SENDR ANAPHORFLG (GETR ANAPHORFLG))
{SETR OBJ =

(* WE LOOK FOR AN NP FOLLOWING "THAN" IN A
COMPARATIVE COMPLEMENT, IF WE FIND ONE

(RATHER THAN A SENTENCE), WE MAKE IT THE OBJECT OF
THE VERB. E.G, "FRED I5 TALLER THAN JIM,"

IS ANALYZED AS "FRED [TALL COMPARATIVE] JIM.")

(TC VP/NBY))

(VP/AGT
(PUSH NP/ T
(SETR SUBJ =)

(*+ HERZ? IF THE SENTENCE IS PASSIVE, WE HAVE NOT YKT
FOUND THE AGENT, BUT W% HAVE SEEN THE REPOSITICN
RY, WHICH MIGHT INTRODUCE THE AGENT NP,

USALLY, THY AGENT NP WwOULD BE IDENTIFIED HEKRE 'BY' A
PUSH, BUT IN A QUESTION OR RELATIVE CLAUS:, THE
AGENT MIGHT HAVE BEEN FRONTED, LEAVING THZ 'BY'
DANGLING: 'WHO IS THE INFORMATION NEEDED BY' OR 'THE
MAN THE TINFORMATION IS NEEDED BY,..'.

IN THESE CASES, THE NP HAS BEEN HELD, AND RRC 2
PICKS IT UP, THE RESUME ACTION ALLOWS FOR &N
EXTRAPOSED RELATIVE CLAUSE OR PPF,)

(SETR AGFLAG NIL)
(" VE/VP)Y)

(VIR NP T
(XESUME)
(SETR SUBJ =)
(SETR AGFLAG NIL)
(T7 VP/VPY YY)

1:45

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:5uPHM PAGE 1:46

(VP/COMP-ADJ

(CAT ADJO T
(SETR V (BUILDQ (@ (ADJ) ()
%)
{COND

({WRD MORE MORE-MNOST)
(QUOTE (COMPARATLVE)))
(T (QUOTE (SUPERLATIVE))))
(COND
((WRD (APPEAR SEEM)
V)
(QUOTE (SEEMING)))))

(* MAKES AN UNDETERMINED COMPARATLIVE OR SUPERLATIVE
ADJECTIVE IN PREDICATE ADJECTIVE POSITION THE DS
VZIRB., IF THE COPULA WAS "APPEAR"™ OR "SEEM", THE
FEATURE "SFEMING"™ IS ADDED TO THE NEW VERB,

E,G. "FRED IS MOST INTERESTED IN SNAKES" THE DS VERB
IS (ADJ INTERESTED SUPERLATIVE))

)
(T> VP/ADJ)Y))

(VP/HEAD
(CAT PREP (SETQ TEMP (VPARTICLE V

(» HERE WHEN WE HAVE MADE FIRM DECISICONS ABOUT THE
MAIN VERB AND THE SUBECT, WE LOCK FOR rO0ST-VERBAL
MODIFIEES (OBJECTS, SENTENTIAL COMPLEMENTS,
PARTICLES, PREDICATE ADJECTIVES), MANY OF WHICH ARE
SPECIFIED BY ROOT FEATURES ON THE VERR,)

)

(= THIS ARC IDENTIFIES A PARTICLE IMMEDIATELY
FOLLOWING THE VERB ('LOOQOK UP', 'LUOK FOR'), THE
FUNCTION VPARTICLE EXAMINES THE PROPERTY 'PARTICLES'!
IN THE VERB'S DICTIONARY ENTRY, WHICH INDICATES WHAT
PARIICLES ARE ALLOWED, AND WHAT THE NEW ROQOT VERB
CORRESPONDING TO THE VERB+PARTICLE COMBINATION 1S,
THUS, 'LOUK yp' MLIGAT CAUSE THE MAln VERSD TV BE
CHANGED TO 'LOOK-UP', WHICH MIGHT HAVE DIFFERENT
ROCT-FEATURES THAN 'LOOK',)

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:DU4FN PAGE 1:47

(SETR V TEMP)
(SETR HEAD TEMP)

(TG VP/V))
H N AND b BE
STRING)
(SENDRQ V BE)
(SENDRQ ANAPHORFLG (GETR ANAPHORFLG) (* WE MAKE THE NP
FOLLOWING BE ITS OBJECT
RIGHT OFF.)

)
(SETR OBJ =)
(TG VP/NP))
(JUMP VP/NP (OR (RFEAT INTRANS V)
(AND (VTRANS V)
(GETR 0BJ)))

{#* IF THE MAIN VERB IS MARKED INTRANSITIVE, THERE IS
N0 PREDICATE COMPLEMENT DIRECTLY TIED TO THE
VORB--WE SKIP TO VP/NP,)

{PUSH S/Q (AND (VTRANS V)
(WRD (WHICH WHO WHAT WHOSE)))

{# CERTAIN VERBS CAN TAKE INDIRECT QUESTIONS AS
THEIR OBJECTS (E.G, 'KNOW'), THESE ARE MARKED AS
ORDINARY TRANSITIVES IN THE DICTIONARY, SO IN ORDER
TO RECOGNIZE THESE CONSTRUCTIONS, WE ALLOW THE
POSSIBILITY THAT ALL TRANSITIVE VERBS CAN TAKE THESE
OBJECTIS, ('I KNOW WHO WANTED THE INFORMATION,'))

(SENDRQ TYPE IDQ)
(SETR 0BJ (BUILDQ (NP =*)))
(TC VP/NP)Y)

(VIR NP (VTRANS V)

(» FOR RELATIVE CLAUSES, PASSIVES, AND
WHC-BE-QUESTIONS, THE DIRECT OBJECT HAS BTEN HELD;
WE PICK UP HERE, LOOKING FOR POSSIBLE EXTRAPOSED

RELATIVES,)

~s

<WEBBER>ANNGRAM,;23 MON 12-.JUN-72 9:54PH

PAGE 1:48

(RESUME V)
(SETR OBJ =)
(TC VBP/NP))

(PUSH NP/ (AND (VIRANS V)

(NOT (WRD BE V)))

{*» HERE WE PICK UP THE REGULAR OBJECT OF TRANSITIVE

VERBS, N0oT: THAT FOR A WHQ-QUESTION WLTH *BE' AS THE
MAIN VEPRR ('WHO IS THE LEADER?'), THE SUBJECT

('THE LEADER') WAS PICKED UP AT STATE S=NO-SUBJ, AT

WHICH POINT THE WHQ WAS HELD,
THUS WE DON'T LOOK FOR THE OBJECT ON THIS akC, BUT

RATHER ON THE SUBSEQUENT VIR ARC,)

(SENDR V (GETR V}))
(SENDR ANAPHORFLG (GETR ANAPHORFLG))

(SETR OBJ *)

(TC VP/NP)Y))
{# WE RECJGNIZE TWO WORD
INFLECTED ADJECTIVES IN

(WRD 1"RT (AND (RFEAT COPULR V

PREDICATE ADJECTIVE
POSITION)Y)
(GETP (NEXTWRD)
(QUOTE ADJ)Y))
(T{ VP/MORE))

(PUSH COMPL/ (AND (WRD THAT)
{RFEAT THATCOMP V))

‘!« VERBS MARKED 'THATCOMP' CAN TAKE A THAT-CLAUSE AS
A COMPLEMENT ('I BELIEVE THAT THEY...').)

(SETR COMPL =)

(T VP/NP))
(PUSH COMPL/ (AND (WRD (FOR TO))
(RFEAT FORCOMP V))

(x 'FORCOMP' VERBS TAKE A FOR- OR TO-COMPLEMENT: 'WE

HOPE FOR JOHN TO COME', 'WE WANT 1O COME',
FOR A TO-COMPLEMENT, THE SUBJECT OF THE COMPLEMENT

IS THE 3aMi AS THE SUBJECT OF THE SENTENCE,)

; <WEBBFEER>ANNGRAM,;23 MON 12-JUN-72 9:54PN PAGE 1:49

(! (COND
((WRD TO)
(SENDR SUBJ (GETR SUBJ)))))
(SETR COMPL =)
(T2 VP/VP))
(PUSH COMPL/NTYPE (SCOMP V)

(#« FINALLY, CERTAIN VERBS ALLOW THE 'THAT' PRECEDING

A COMPLEMENT TO BE DELETED,
THE PUSH HERE ALLOWS FOR THIS,)

(SENDRQ NTYPE THAT)
(SETR COMPL x)
(TC VP/NPY))

(VP/MORE
(CAT ADJ T
(SETR V (BUILDQ (® (ADJ) (*)

(COMPARATIVE)
#)

{COND
((WRD (APPEAR SEEM)

V)

(QUOTE (SEEMING))))
(* A TWO WORD COMPAKATIVE ADJECTIVE REFLACES A

COPULA AS DS VERB, IF THE CCPULA WERE "APPEAR" JR
“STEM", THE NEW VERB GETS THE FEATURE "SERMING".)

))
(T VP/ADJ)))

B.51

; <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PHN PAGE 1:59

(VP/NP
(PUSH COMPL/ (OR (AND (WRD (FOR THAT))
(EQUAL (GETR SUBJ)
(QUOTE (NP (PRO IT)))
(* THE FIRST OBJECT OR
COMPLEMENT CAN SOMETIMES
BE FOLLOWED BY OTHERS.)
)
(AND (WRD THAT)
(GETR AGFLAG)))
(COND
({GETR AGFLAG)
(SETRQ AGFLAG NIL)))
(SETR SUBJ =)
(TC- vVP/VP

(* IF THE SUBJECT WAS 'IT', THE SUBJECT COMPLEMENT
OF THE VERB MIGHT HAVE BEEN EXTRAPOSED TO THIS
POSITION: 'IT IS CLEAR THAT ...' OR 'IT IS EASY FOR
JOHN TO .,..'. THIS ARC MOVES THESE COMILEMENTS BACK
T0 SUBJFECT POSITION, WHERE THEY BELONG,

ALS0, A THAT-COMPLEMENT SUBJECT COULD HAV= BEEN
MOVED TO THIS POSITION BY PASSIVIZATION: 'I WAS
SURPRISED THAT,..' FROM 'THAT .,.

SURPRISED ME*', THE OBJECT 'I-ME' IS PICKED UP ON THE
VIR NP ARC FROM STATE VP/HEAD;

THF, AGENT CLAUSE IS PICKED UP HERE.)

)
(PUSH FOR/NP (RHD (RFWAT TOCOHNP V)
(GETR 0OBJ))

(* A TO-COMPLEMENT CAN OCCUR AFTER THE OBJECT: 'I
PROMISEL JOHN TO GO' OR 'I WANTED JOHN T0 GO',

FOR MOST V:RES, THE SUBJECT OF THE CONM:.LEMENT IS THE
OBJECT ('JOHN') OF THE MAIY SENTENCE, BUT VERBS
MARKED *SUBJLOW' HAVE THE SUBJECT OF THE MAIN
SCNTENCE PASSED DOWN (E,G, 'PROMISE'). FOR
'"TRANSCOMP' VERBES, THE OBJECT PASSED DOWN TO BE
SUBJECT REMAINS AS THE TOP-LEVEL OBJECT
('PERSUADE'), BUT THIS IS NOT ALWAYS TRUE
("EXPECT'))

<WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PNM PAGE 1:51

(SENDR SUBJ (COND
({RFEAT SUBJLOW V)
{GETR SUBJ))
(T (GETR OBJ))))
(COND
((NOT (RFEAT TRANSCONP V))
(SETR OBJ NIL)Y))
(SETR COMPL =)
(T5 VP/VP))
(CAT PREP (SETQ TEMP (VPARTICLE V))
(» A PARTICLE CAN OCCUR
AFTER THE OBJECT: 'LOOK
THE INFORMATION UP')

(SETR V TEMP)
{SETR HEAD TEMP)

{TC VP/VP)Y))Y
(CAT ADV T
(ADDL VvMODS (RBRUILDQ (ADV =) (» AN ADVERB MAY FOLLOW
THE INDIRECT OBJECT)
1)
(T> VP/NP)Y)

(PUSH NP/ {(AND (RFEAT INDOBJ V)
(GETR 0BJ))

A NP CAN OCCUR IN THIS PCSITION IF THE VERB CAN
WHAT WE THOUGHT WAS THE
AND THE NP

{ *
TAKE AN INDIRECT OBJECT,
OBJECT WAS REALLY THE INDIRECT OBJECT,
HERE IS TO BE THE DIRECT OBJECT.
{'TI GAVE JOHN THE INFORMATION' --> 'I GAVZ THE

INFORMATION TO JOHN'))

(ADDL VMODS (BUILDQ (PP (PREP TO)
+)
OBJ))
(SETR OBJ *)
(T2 VP/VPY)
(FOR THAT))

(PUSH COMPL/ (AND (WRD
{RFEAT INDOBJ V))

{# THE DIRECT OBJECT CAN ALSO BE A COMELEMENT, FOR
CTRTAIN VERBS THAT ALLOW INDIRECT OBJECTS: 'I T<LD
MARY THAT,..')
(#DDL VMODS (BUILDQ (PP (PREP TO)
+)
OBJ))
(SETR 0BJ NIL)
(SETR COMPL =)
7. VP/VP)Y))
(JUMP VP/VP T
(* FINALLY, JUMP TO

VE/VP)))

B.53

5 <WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PH PAGE 1:52

(VP/V
(CAT Vv T

(» THE FIRST VERB CAN BE FOLLOWED BY OTHER VERBS TO
FILL OUT THE PERFECT-PROGRESSIVE-PASSIVE AUXILIARY
STRUCTURE, ADVERBS AND THE SUBJECT OF &
THERE-INSERTED SENTENCE CAN BE INTERSPERS:ED BETWEEN
THE VERBS--WE LOOP FOR THEM HERE,)

(= VERBS AFTER THE MAIN VERB MUST BE PARTICIPLES OR
UNTENSED FORMS, IF A PAST PARTICIPLE, THE PREVIGUS
VERB IN THE SEQENCE MUST BE EITHER 'HAVE'
(ASPECT=PFRFECT) OR 'BE' (SENTENCE IS PASSIVE, IF
POSSIBLE), A PRESENT PARTICIPLE MUST BE PRECEDED BY
'BE' (ASPECT=PROGRESSIVE), OTHERWISE, THE CURRENT
WORD MUST BE AN UNTENSED VERB AND THE REGISTER V
MUST BE EMPTY (BECAUSE THE FIRST VERB WAS A MODAL),
IF ANY OF THESS CONDITIONS IS SATLISFIED, WE REPLACE
THE VERB BRY THE ROOCT FORM OF THE CURRENT WORD,)

(COND
((GETF PASTPART)
(COND
((AND (WRD BRE V)
(VPRSSIVE *))
(HOLD (GETR SUBJ)
(GETR NPFEATURES))
(SETR SUBJ (BUILDO (NF (PRO SOMETHING))))
(SETR AGFLAG T))
((AND (NULLR ASPECT)
(WRD HAVE V))
(SETRQ ASPECT (PERFECT)))
(T (RBOET))))
((GETF PRESPART)
(COND
({(WRD BE V)
(ADDR ASPECT (QUOTE PROGRESSLVE)))
((WRD POSS-ING TYPE))
(T (AROERT))))
((OR (NOT (GETF UNTENSED))
(GETR V))
(ABORT)))
(SETR V =)
(TC VP/V))

<WEBBER>ANNGRAM,;23 MON 12-JUN-72 9:54PN PAGE 1:53

(CAT aDJ (RFEAT COPULL V)
(SETR V (BUILDQ (® (ADJ) (%)
#)
(COND
({GELF COMPARATIVE)
(QUOTF (COMPARATIVE)))
((GETF SUPERLATIVE)
(OUOTE (SUPERLATIVE))))
(COND
((WRD (APPEAR SEEM)
V)
(QUOTE (SEEMING))))))

{(* A PREDICATE ADJECTIVE (SIMPLE OR INFLECTED)
REPLACES R COPULA AS DS VERB,

IF THE COPULA WAS "APPEAR" OR "SEEM", THE FEATUKE
"SEEMING™ IS ADDED TO THE NEW VERSB,)

MORE MOST)
(4ND (RFEAT COPULR V)
(GETP (NEXTWED)
(QUOTE ADJ)))
(SETR MORE-MOST =*)
(7. VP/CONP-ADJ))
(PUSH NP/ (AND (GE&TR THERE)

(7. VP/ADJY)
(MEM |

(NULLR SUBJ)
(WRD (RE EXIST)
v))
(* HERE WE PUSH FOR THE
SUBJECT OF A
THERE-INSERTED
SENTENCE,)
(CTND
({HCT (BNCHECK * (GETR PNCODE)))
(AKORT)))
(SETP SUBJ =)
(T VE/V))

{JUWP VPB/HEAD (GRIR SUBJ)

{« IF WF HAVE THE SUBJFECT, WE CAN ASSUME THAT WE
KLSO HEVE THE MAIN VERB (USUALLY, THIS WILL BE TRUE
ETCARUSE wWZ WOULD HAVE LOOPED THROUGH THE FIRST ARC
LS LCON%® AS POSSIBLE) AND JUMP TQ VP/HEAD TO LOOK FOR
POST-VERB CONSTITUENTS, IF THE V REGISTER IS EMPIY
(IHE FIFST AND ONLY VEZRB WAS A MODAL), WE ABORT

UNLESS THE MCDrL WAS 'DO'--WE ALLOW 'DO' TO BECTME
THT MAIX VEERR,)

-e

<WEBBER>ANNGRAM.,;23 MON 12-JUN-72 9:54PN PAGE 1:54

(COND
((NULLR V)
(COND
((WRD DO MODAL)
(SETRQ V DO)
(SETR MODAL NIL}Y)
(T (ABORT))))
(T (COND
({AND (GETR THERE)
(WRD BE V))
(SETRQ V EXIST)))))
(SETR HEARD (GETR V)))

(CAT ADV T
(ADDL VMODS (BUILDQ (ADV =)))
{10 VP/VYY)
(VP/VP

(WRD RBY (GETR AGFLAG)

(» THE ELEWENTS OF THE VEKB PHRASE WHICH ARE CLUSELY
TIED TO THE MAIN VERR (E.G, COMPLEMENTS) HAVE BEEN
PROCESSED, VARIOUS ADLDITIONAL MODIFIERS ARE STILL
PCRMITTED (ADVERBS, PREP-PHRASES). ALSO, WE LOOK FOR
THF AGENT OF PiaSSIVE SENTENCES AND THE OBJECT OR
SURJECT OF POSS-ING COMPLEMENTS, IF THESE HAVE NOT
BTEN ALREADY IDENTIFIED,)

{* AGFLAG IS SET IF WE HAVEN'T FOUND THE SUBJECT OF
A PASSIVE SENTENCE, 'BY' CAN INTRODUCE IT,)

(TO VP/AGT))
(WRD RY (AND (WRD POSS-ING TYPE)
(NULLR OBJ)
(NULLR SUBFLAG))

{« IN A POSS-ING COMPLEMENT WHERE THE SUBJECT WAS
SENT DOWN FROM THE POSSESSIVE AT STATE NP/DET, THE
SINT SUBJECT MIGHT REALLY BE THE OBJECT IF NO OBJECT
WAS FOUND ('THE DUCK'S SHQOTING BY THE HUNTERS ..,')
AND THE REAL SUBJECT CAN FOLLOW A 'BY' IN THIS

POSITION,)

B.56

<WEBBEE>ANNGRAM,;23 MON 12-JUN-72 9:54PHN PAGE 1:55

.
»

(SETR OBEJ (GETIR SUBJ))
(70 ING/EY))

(MEM (OF 1BY)
(GETR SUBFLAG)

(*# IN A POSS-ING COMPLEMENT, IF THE SUBJECT WAS NOT
IT CAN APPEAR

SENT DOWN FROM THE POSSESSIVE,
'THE SHOOTING OF THE

FOLLCWING FITHER 'OF' OR 'BY':
HUNTERS ,,.' OR 'THE SHOOTING BY THE HUNTERS')

(SETR SUBFLAG NIL)
(TC ING/BY))

(CAT ADV T
(ADDL VMODS (BUILDQ (ADV =}))

(TC VP/VE)Y)
(PUSH PP/ (CAT PEFP)
{#DDL VMODS =)
(TC VP/VPY)
(JUMP S/VP TY)
)
STOP

Appendix C

Semantic Rules

3 <WEBBRR>RULES,WRITEUP;7 SUN 11-JUN-72 12:29pN FAGE 1

(PROGN (LISPXPRIN1 (QUOTE "FILE CREATED ")
T)
(LISPXPRIN1 (QUOTE "11-JUN=72 12:29:¢48")
T)
(LISPXTERPRI T))
(LISPXPRINT (QUOTE RULESCOMS)
T)
({RPAQQ RULESCOMS ((V: GENRULES)
(Rt TRULFS)
(Ve NEWRULES)
{V: TRFEFRAGS)
(Ve RULELISTS)))
(LISPXPRINT (QUOTE (V: GENRULES)) T)
(RPAQQ GENRULES (ADJ:MASS ADJISET ANY:TERM D:ALL D:ALL-PL D:ALL\ONES
DIANAPHORAR D:ATLERST D:ATNOST D:AVERAGE DICARDINAL D:ERCH D:EVERY
D:EXACTLY D:HOWMANY D:LESSTHAN D:MASS D:MAXIMUM D:MINIMUM D:MORETHAN
DINEG DINIL D:NO D:NOT-SrT D:NUMBER D:OLDEST D:ORDINAL D:SEMI-ANAPHOR
D!SET1 D:SFETOF D:SOME D:SSET D:THE-PL D:THE-SG D:THE-SG2 D:wHQ~-PL
D:WHO-SG D:WHR NP:;NPR PR71 PR2 PR3 PR4 PR5 PR6 R:ADJ R:PP R:QREL R:REL
S:BE-AROUND S:BE-FQOUAL S:BE-GREATER-VAL S:BE-LESS-VAL S:BE-MEMBER
S:BE-MEMBER= S:iDCL S:IMP S:NEG S:NPQ S:NPU S:QREL S:QREL-NEG S:WHQ
SIYES/NO S33P $S32 S$S33 S$S34 SS35 S536 SS41))
(DEFINEV
(ARDJ:MASS ((T T)
->
(PROGUY

{* THE INTZRPRTTATION PRODUCED FOR A MASS NOUN
MONIFYING ANOTHER NOUN (E,G, "THE SLLICA PHASE"™) 1S
{NPR* X / (QUOTE ---)), WHERE THE STANDARD FORM OF
THE MASS NOUN 1S5 INSERTED IN THE SPACE.

THE FUNCTION NPR FINDS THE SPANDARD FORHN)

(SETQ SEM (SUBST (QUOTE (NPR* X / W}))
(QUOTE DLT)
QUANT))
(SETQQ QUANT DLT)
(SETQ SEM
(SUBST (LIST (QUOTE QUOTE)
(EVAL (CONS (QUOTE NPR)
(QUOTE (# @ TERM)))))
(QUoTH W)
SEMYYI)Y))
(ADJU:SET ((ADJ.NP (NMEM 1 SET))
-
"PRUGT (8271Q SEM
{SUBLIS (QUOIw ((FOR ., UNION)
(DLT (# 1 1 NRULES))))
QUANTDY)
(SETQD QUANT DLT

; <WERBEBR>RULES,WRITEUP;7 SUN 11-JUN-72

{(* ADJ:SET MATCHES A NOUN-NOUN MODIFIER WHEN IT
K:FERS T0 A SET, E.G, "RRARE-EARTH ANALYSES",
RARE-EARTH REFERS TO THE SET OF ELEMENTS WITH ATOMIC
NUMBERS 58 THROUGH /1, THE INTERPRETATION PRODUCED

121290

PAGE

IS SIMILAPF TO THAT FOR "ANALYSES OF RARE<EARTHS™:
(FOR EVERY X6 / (SEQ RARE-EARTHS): T ;

NLTY W)

)
(ANY:TERL ((T T)
-2
(LIST (QUOTE QUOTF)
(EVAL (CONS (QUOTE WPR)

(QUOTE (# P TERM))

{» ANY:TrPM IS USED TO INTERPRET VEKBS,
INTEGERS, PROPER NOUNS AND ADJECTIVES,

THT LAUTTPPRETATION IS (QUOTIE --=),
AR® FILLED BY THE STANDARD FORM OF THE

COMPUTED BY NPE,)

1)
(D:ALL ((NP,.DET T)
-

{QUANT {(FOR ZVFRY X / (# ¥ NRULES)

{# 3 RRULLES)
; DLTYI)Y M)
(D:ALL-PL ((NP.D<™ (AND (EQU @ BALL)
(EQU 2 pLYY)
-2
(PROGH (LSURSI (QUOT® EVERY)
(QUOTE GEN)
CUANT)

(QUANT (FOR :VIRY X / (#® ¥

2LTY)Y D)
(D:ALL\ONES ((NP ,DET (EQU)
(NP,PRO (EQU
(NP PP (EQU I
-

(OUNTE (# 3 2 ALL)

7 4 = — e

>
K o
U o~
—
-~

[®]
m 0O o

~—
—

€ RRKULES)

NRULES)

ADVERBS,

WHERE The SPACLS
wWORD,

(= DIALLNCNES INVOKES 7THE KULE D:ALL ON THE NODE'S

DZPENDANT PR¥WPOSITIONAL PHRASE VIA THE TYPEFLAG
F.5, 04 THE PP OF "ALL OF THE TYPE/A SAMPLES",

THE

INTERPRFTATION IS SUCH THAT THE QUANTIFIER COMES
FORM "“ALL"™ AND THE CLASS A&D RESTRICTIONS FRO{ THE

PZPENDINT NP,)

11

'IALLOI.

; <WEBBEE>RULES,WRITEUP;7 SUN 19-0UN-72 12:1292N PAGE 1:2

)
(D:ANAPHORA ((OR (NF.PRO (NOT (OR (EQU 1 L)
(EQU 1 YoU)
(EQU 1 ONES)))
(NP.DET (OR (EQU 1 THIS)
(EQU 1 THAT)
(EQU 1 THESE)
(EQU 1 THOSE))))
(NOT (NP,PP T))
(NOT (NPL,REL T))
-
(PROGY (SETQ QVAR (ANTECEDANT (QUOTE (# © IDENTITY)))

(« DTAVLPHORA MATCHES ANAPHORIC NP'S NCT MODIFIED BY
PREPOSITIONAL PHRASES OR REZLATIVE CLAUSES, E,G, "1T",
"THOSE BRRIUM nNALYSFES", THE INTERPRETATION DEPENDS
ON THE ANTFRCEDANT, SEXZ THE FUNCTION DESCRIPTIONKS OF
ANTECEDARNT, ANTEQUANT AND SCOPEVARS FOR FURTHER
EXPLANLTION,)

)
(MAPC (SCUPEZVARS QVAR)
(FUNCTION ANTEQUANT))
(ANTEQUANT QVAR))Y))
(D:ATLFAST ((NP,DFET.COMP (OR {(EQU 1 ATLEAST)
(EQU 1 ASMANYAS)))
-
(QUANT (FOR (EQ N (# 1 2))
X / (# & NRULES)

(# @ KRULES)
; DLT)IY))
(D:ATMOST ((NP,DET,COMP (EQU ° ATMOST))
-
{(OUANT (NOT (FOR (GREATER N (# 1 2}))
X / (# & NRULES)

(DIAVEEAGE ((T T)
->
(QUOTE (SEQL (AVERAGE X / (# ¢ NRULES)

(# © KRRULES))))))
(D:CARDINAL ((NP,DET,INTEGER I)
-2
(QUANT (FOR (EQ N (# 1 1 INTEGER))
/ (# & NRULES)
. RRULES)
DLTY)))

e o~ 08 > o~

; <WEBBER>RULES ,WEKITBUP;7 SUN 11-JU¥-72 12:29° M FAGE 1:3

(D:EACH ((NP,DET (AND (EONU LACH)
(ECU 2 SG)))
-

(QUANT (FOER =V

]

RY X / (# # NRULES)

. RRULES)

; DLTY)Y))
(D:EVERY ((NP,DET (AND (EQU 1 EVERY)
{=QU 2 SG)))

(

->
(QUANT (FOR EVERY X / (# @ NRULES)

(# % RRULES)
: DLT)IY)
(DIEXACTLY ((NP,DET,COMP (EQU 1 EXACTLY))
-
(QUANT (FOR (EQ N (# 1 2))
X / (® & NRULES)

(# © RRULES)
; DLT))))
(DIHOWMANY ((NP,DFT (AND (EQU 1 HOWMANY)
(CR (EQU 2 PL)
(EQU 2 SG/PL)}))

->
(QUANT (FOR THE X / (# @ NUNBER)
: T 5 (PRINTOUT X)))))
(DILESSTHAN ((NP,DET,COMP (OR (EQU 1 FEWERTHAN)

(RF0U 1 LESSTHAN)))
->
(OUANT (NOT (FORK (EU N (®m 1 2))

X / (®# & NRULES)

(# 2 RRULES)
: DLTY)Y I)
(DIMASS ((YP.N (OB (MEM 1 (MASS)

'* DIMRSS MATCHES A MASS NCUN AND PRODUCES AS ITS
INTERPRFTATION, A VAKIABLE ASSOCIATED wlITH THE
STANDARD FORM OF IKHE NCUN, E.G6, "ALUMINUM" Is
INTERPRETED AS (NPR* X / {(CUOTE AL203)))

)
(EQ (GETP (CAR (TERM (CONSTITUENTS (# 1))))
(DUOTE N))
(0UOCT™ MASS)))Y)
-
(PROGN (SETO ST (SUBSY (QUOTE (NPR* X / W))
(QUOTE DLT)
QUART)Y)
(SFTOQ QUANI DLT)
(SETTO SEM (5UsST (LIST (QUOTE QUOTE)
(TABFORM (# 2 HEAD)))
(QUOTE W)
SEM)))N

C.5

; <WEBBER>RULES ,WRITEUP;7 SUN 11-JUN-72 12:29PN PAGE 1:4

(DeMAXIMUM ((T T)
->
(QUOTE (SEQL (MAXIMUM X / (# © NRULES)

(# © RRULES))))))
(D:MINIMUM ((T T)
->
(QUOTE (SEQL (MINIMUM X / (# ¥ NRULES)

(# ¥ RRULES))})))
(D:MORETHAN ((NP,DET.COMP (EQU 1 MORETHAN))
->
(QUANT (FOR (GREARTER N (# 1 2))

(
X / (# 2 NRULES)
{
;

(9 BRRULES)
DLT))))
(D:NZG ((NP_NEG T)
-
(QUANT (NOT (# 1 1)y})N
(DeNIL ((NP,DET (EQU 1 NIL))
-
(QUANT (FCR GEN X / (# ¢ NRULES)

(# 3 RRULES)
; DLTHIY M)
(DINO ((NP.,DET (EQU 1 NO))
->
(QUANT (NOT (FOR SOME X / (# © NRULES)
(# & RRULES)
; DLTHYM))
(DeNOT-5ET ((T T)
-

(QUOTE (# 7)

(% DINOT-SET IS A DEFAULT RULE USED IF AN NP NODE
CANNOT BRE INTFRPRETED AS REFERRING TO A SET,

AS A RESULT, THE NORMAL DRULES FOR THAT NODE ARE
MATCHED,)

1))
(D:NUMBER ((T T)
-2
(SSUNTONF (SEQL (NUMBER X / (# @ NRULES)

{(# & RRULES))))))

‘ 7

<WEBBER>RULES,WRITEUP;

m

(D:OLDEST ((T T)
->

(NPUOTE (SEQL

(D:ORDINAL ((NP,DET,ART
->
(QUANT (FOR

X

(#

-
.

DIQ&DINAL
UMBEKS, E,6G,

(t

"”PE THIRD POT SSIUM ANALYSIS FOR SAMFLE

INTERPRETATION IS
(WHQFILE

{DATALINF
DLT))

1))

(DISIMI-ANAPHOR ((NF,.FRO

(NE,PP
-
(FROG

{» D:SV¥
ANAPHORRA,
FHRASES,
INTERP:r
TH:
FURTHE"

E
.
D
el

.G,
IOJ
RO NCTI
NUTAIL

T SET
V)

(OLDEST X /
(EQU
(NP,OET . POSTART

{ORDINAL

MATCHES

(NO

{3

FI-ANAPHCR MATCHES ON TYPE Of
PRONOUNS MODIFIED BY PREPOSITIONAL
"GIVE ME
DEPENDS ON THE ANTECEDA

ION

SUN 11-JUN-T72 12:29: M PAGE

(# ¥ NRULES)
(# % RBRULES))))))
7 THE)Y)

(NUMBERP 1

(EVAL (CADADR (¥4

(# 2 1 TERNM))
NRULES)

/(R
¥ RRULES)

DLT)

DETERMINERS WHICH ARYT ORDINAL

103" LHE
(FOR
S3122383)

(ORDINAL 3) X /
S19Pv3 OVERALL K20):

’

T

m

T 1

1
1

i)
You)
ONLS))))

tzou
(EQU
(EQU

(OR

)

ENIANAPHOR (QUOTE (g 1ID-KTITY))

PRRTIAL
THOSE FOR S120£3" THE
NT,

DESCRIPTICN OF SEMIANAPHOR FOR

.)

1)
THE)
NIv)
Ad))

« UNION)
SETLIST X /
(# © NRULES)

(QUOTE ((fCR

(DLT

(SUBLIS

{(# 2 RRULES)
)

’

QUANT)

TERM)))))

; <WEBBEE>RULFES,WRITEUP;7 SUN 11-0UN-72 12:29ItHM PAGE 1:6

(= DISET1 MATCHES AN NP INTERPRETABLE AS A SET, E.G,
“THE TYPE/B ROCKS WHICH CONTAIN SILICA™ THE
INTERPRFTION IS THE LIST OF OBJECTS IN THFECLASS
MZFTING THE GIVEN RESIRICTIONS E,G.

(SETLIST X / (SEQ TYPEBS):

{CONTAIN X SILICA); T))

)
(SETOQ QUANT DLTI))))
(D:SETOF ((NP,DET (AND (OR (EQU 1 THE)
(2QU 1 ALL)
(EQU 1 NIL))
(FQU 2 PLY))
-2
{PROG1 (SETQ SEM (SUBLIS (QUOTE ((FOR , UNION)
(DLT SETQF X / (# © NRULES)

(# @ RRULES)
¢ TY))
QUANT)

(*# D!SETOF INVOKES THE INTERPRETATION OF THE NODE AS
A RESTRICTED SFT, PRODUCING A SINGLE SUCCFSSOR
FUNCTION FOR THE CLASS OF THE NODE AND ITS
RPSTRICTIONS, T.G., IT WOULD PRODUCE FOR

“"THE BRFCCIAS WHICH CONTAIN KRYPTON" THE
INTERPRTTATION (SETOF X / (SEQ TYPECS):

{CONTAIN X (QUCTE KR)); T))

)
(SETQQ OUANT DLT))))
(D:SOME ((NP.DET (OR (kQU . SOME)

(EQU A)
(EQU AN)
(EQU ANY)))

-

(QUANT (FOR SOM: X / (# 2 NEULES)
(# y RRULES)
; DLTY)Y))

(D:SSET ((NP,DET (OE (EQU EVERY)

{EQU 2 SG/PL)
(EQU 2 PL)))

-2

(OUANT (SSUWION X / (# @ NRULES)

(# ¢ RRULES)
3 DLT))Y)

; <WEBBER>RULES,WRITEUP;7 SUN 11-0UN-72 1Z:iz9yi

(DSTHE-PL ((NP.DET (AND (EQU 1 THE)
(OR (EQU 2 PL)
(EQU 2 SG/PL))))
->
(QUANT (FOR EVERY X / (# 2 NRULES)

(# ¢ RRULES)
; DLTY) Y
(D:THE-SG ((NP.DET (AND (OR (EQU 1 THE)
(EQU 1 THIS)
(EQU 1 THAT))
{EQU 2 S5G)))
-
(QUANT (FOR LHE (# NKULE)
(# @ RRULES)
LLT))))
{D:THE-SG2 ((NP,DET (AND (EQU 1 THE)
(EQU 2 5G)))
(NP,N (MEM 1 (NONSPECIFIC)))
-
(QUANT (FOR EVERY X / (®# D KRULES)

e

(# ¥ RRULES)
; DLT)

PAGE

(% DITHE-S5G2 MAICHES DEFINITELY DETERMINED SINGULAER
NCUN PHRASKES WHICH DO NOT HAVE SINGLE REFTRENTS.
FOR EXAMPLE, "IHE AGE CF S180£7" DOES NOT HAVE &

SINGLE REFER®ENT, BUI RATHER SEVERAL,
MTASURING TECHNIQUE EMPLOYED.)

)

(DIWHQ-PL ((NP,DET (AND (OK (EQU 1 WHICH)
(EQU 1 WwHAT)
{EQU 1 WHQ)
(EQU 1 WHICHQ))

(EQU 2 PL)YY)
-
(FPROGHN (LSUBST (QUOTE EVERY)
(QUOTE GEN)
QUANT)

(QUANT (FOR EVERY X / (# & NRULES)

(# 2 RRULES)

(PRINTOUT X))))))

ONE FOR EACH

1:7

; <WEBBER>RULES,WRITEUP,;7 SUN 11-JUN-72 12:129PN PAGE 1:8

(D:WHQ-SG ((NP.DET (AND (OR (EQU 1 WHQ)
(EQU 1 WHICHOQ)
(EQU 1 WHICH)

(EQU 1 WHAT))
(EQU 2 8G)))
-
(OUANT (FOR THE X / (# @ NRULES)

(# @ RRULES)

’
{PRINTOUT X))})))
(D:WHR ((NP.DET (EQU 1 WHR))
-2
(QUOTE (# &)

{* THE INTSRPRFATION OF THEZ RELATIVE NP IN A
RCLATIVE CLAUSE IS THE VARIABLE ATTACHED TO IT IN
THE MATRIX SENTENCE.)

')
(NP:NPR ({(NP.NPR T)
-
(PROGN (SETO SEVN (SUBST (QUOTE (NPR« X / W))
(QUOTE DLT)
QUANT)

(* THE INTEZRPRZTION OF A PROPER NOUN IS A VARIABLE
ASSOCIATED WITH THE NOUN IN ITS STANDAERD FORM,
E,G. "NASA"™ IS INTERPRETED AS

(NPR* X / (QUOTE NASA)))

)
(SETQQ QUANT DLT)
(SETQ SENM
(SURST (LIST (QUOTE QUOTE)
(EVAL (CONS (QUOTE NPR)
(QUOTE (# 1 1 TEEM)))))
(QUOTE W)
SENY I
(PR1 ((S.Q-8FEG (NOT (LEAFMEMB P
(QUQOTE (WHQ WHICHQ WHYLN WHERE WHY HOW
HOWMANY)))))

-2

(PRED (TEST (# & SRULES)) (» PR1 MATCHES YES-NO
QUESTIONS PHRASED IN THE
NEGATIVE)

1))

; <WEBBEE>RULES,WRITEUP;7 SUN 11-JUN-72 12:29FNM PAGE 1:9

’

(PR2 ((S5,Q (NOT (LEAFMEMB P
(QUOTE (WHQ WHICHQ WHEN WHERE WHY HOW HOWMANY)
)))
(NOT (S,0-MODAL T))
->

(PRED (TEST (# 2 SRULES)) (* PR2 MATCHES YES.NO
QUESTIONS, THE
INTERPRETATION IS

"TEST THE VALIDITY OF THE PROPOSITION EXPHESSED BY THE SENLENCE,")

(PR3 ((S,NEG T)
->
(PRED (NOT (# 2 SRULES))

{« PR3 MRTCHES REQUESTS VOICED IN THE NEGATIVE THAT

ARE NOT YES-NO QUESTIO¥S, E.G,
"WHICH SAMPLES DO NOT CONTAIN SILICA?")

1))
(PR4 ({OR (({S (DCL))

)
((S (REL))
) ,
((S (POSS-ING))
T))

-

(PRED (# 2 SRULES)

(* PR4 MATCHES DECLARATIVE SENTENCES AND RELATIVE
AND POSSZTSSIVE-PARTICIPLE CLAUSES E,G,

"S108¢3'S CONIFINING SILICA". THE INTERPRETATION IS
THE PROPOSITION EXPRESSED BY THE SENTENCE OR

CLAUSE,)

)))
(PRS ((S,IMP T)
-2

{PRED (DO (# 2 SRULES)) (*» PR5 MATCHES
IMPERRTIVE SENTENCES,)

Y))
(PR6 ((S5,NP T)
(5,Vp T)
-
(PRED (# & SRULES) (* PR6 MATCHES ALL
SENTENCES EXCEPT FOR

NOUN PHRASE UTTERANCES,)

1))

; <WEBBER>RULES WRITEUP;7 SUN 11-JUN-72 12:29EFN
(R:ADJ {(AND (NP,ADJ (NOT (USED? (# 1))))
(NP .N T)
->
(PROG (RANS)
(COND
((USED? (SETQ ANS (CDR (ASSOC

(« RIADJ MATCHES

IT
THAT EFFECT,

IGNORE THOSE ADJECTLIVES,
OPTIONS OF AGREEING,

BREAKING
FURTHER,)

)

1

PAGE 1:1@

(CAR RVECTOR)))

ALL ADJECTIVES IN THE REQUEST WHLCH
HAVEN'T CONTRIRUTED TO ITS INTERPRETATION,

CAUSES A MESSAGE TO BE PRINTED OUT TO THE USER TO
AND THAN ASKS HIM WHETHER IT IS SAFE TO
THE USER IS GIVEN THE
TERMINATING THE REQUEST,
TN ORDER TO INVESTIGATE THE MATTZE

OR

ME TO IGNORE IT?")

(RETURN T)))
(PRINT (QUOTE "I DC NOT UNDERSTAND ")
T)
(PRINT ANS T)
(PRINT (QUOT®E "aS A MODLFIER OF ")
1)
(PRIST (CDR (ASSOC 71 (CADR RVECTOR))))
(PRIN1 {(QUOTE "DO YOU WANT
T)
(TERPEI T)
(COND
((ME™B (SETQ ANS (READ))
(QUOTE (YES T TRUE)))
(PRINT (QUOTE OK)
TY)
((Fy ANS (QUOTE BREAK))
(BFEAKY T T SENSUB))
(T (QUIT)))

T ¥))

Cc.l2

; <WEBBER>RULES ,WRITEUP;?7 SUN 11-JUN-72 12:241M PAGE 1:11

(R:PP (AND (NP,PP (NOT (MEARNING? (¥ 2) (* R:PP ACTS LIKE aAS
RIADJ ON PREPOSITIONAL

FHRASES,)
YY)
-2

(PROG (ANS)
(PRIN1Y (QUOTE "I DO NOT UNDERSTAND ™)

T)

(PRINT (CDR (ASSOC 3 (CAR BVECTOR)}))
T)

(PRIN1T (QUOTE "nS A MODIFIER OF ™)
T)

(PKINT (CDE (ASSOC 4 (CAR RVECTOR)))
1)
(PRIN1 (QUOTE "DO YOU WANT ME TO IGNORE 1T?")
T)
(TERPRI T)
(COND
((MEMB (SETQ ANS (READ))
(QUUTE (YES T TRUE)))
(PRINT (WUOTE OK)
™))
((E0 ENS (QUGTE BREAK))
(RRETAK T T SEMSUB))
(T (QUIT)))
)
At

T))
(A8D (RELTRG (# 1)

(R:QREL ((NP.QREL

(* R:QREL ACTS LIKE AS R:ADJ ON RELATIVE CLAUSES
DZRIVING FROM THE SURFALCE STRUCTURE VERB PHRASES OF
WH-QUESTICONS,)

)
(OR (INTERP (# 1))
(PROG (RANS)
(PRINT (QUOTE "I DO NOT UNDERSTAND ")
T)
(PRINT (R 1)
T)
(PRIN1 (QUOTE
"DO YOU WANT ME TO IGNORE IT?*)
T)
(TERPRI T)
(COHD
({MEMB (SETQ ANS (READ))
(QUOTE (Y=zs5 T TRUE))Y)
(PRINT (QUOTE OK)
I))
({EQ ANS {QUOTE BRERAK))
(BREAK1T T T SEMS3UB))
(T (QUIT)))
T)Y
-
(QUOTE (# 1 1))))

.
’

<WEBBER>RULES,WRITEUP;7 SUN 11-JUN.72 12:249™H PAGE 1:12

(R:REL (AND (NP,REL (AND (RELTAG (# 1) (» R:REL ACITS LIKE AS

R:ADJ ON RELATIVE
CLAUSES,)
)
(OR {(INTERP (# 1))

{PROG (ANS)
({PRIN1T (QUQOTE "I DO NOT UNDERSTAND

T)
(PRINT (# 1)
T)
(PRIN1 (WUOTE
"DQ YOU WANT ME TO IGNORE IT?")
T)
(TERPRI T)
(COND
((MEMB (SETQ ANL (READ))
(QUOTE (YES T TRUE)))
(PRINT (QUCTZ OK)
7))

(BREAK1 T T SEMSUB))
(T (QUIT)))
T)Y
-
(PRED (# 1 1))))
(S:BE-ARQUND ((S,NP-V (AND (¥£EM 1 (ANALYSIS CONCENTRATIOY)
(* S:ARQUND MATCHES
REQUESTS LIKE WHICH
ALUMINUM ANALYSES ARE
AROUND 7 PERCENT?)

)
(EQU 2 BE)))
{5,COMP-N (AND (OR (EQU 1 AROUND)
(EQU 1 APPROXIMATELY))
{ME® 3 UNIT)))
-
(RYILDO (ARCUNDV2L (® 1 1)
%)
(LIST (WUOTE QUOTE)
(CONS (# 2 2 INTEGER)
(g 2 3 UNITY)Y))))
(S!BE-EQUAL ({S,NP-V (AND (EQU 2 BE)
(N0T (OR QU 1 WHQ THING 356G)
QU 1 WHQ THING PL)
QU 1 WdQ THING SG/PL))))Y)
(S.O0BJ (AND (NOT (COK (£OU 1 WHQ THING SG)
(FCU 1 wHyu THING PL)
(R0U 1 wHyY THING SG/PL})))
(EQU 2 SG)Y))
-2
(FR=D (-QUAL (# 1

C.l4

l')

;i <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29:M PAGE 1:13

{* S:!BE-EQUAL MATCHES QUESTIONS OF THE FORM IS X ¥?
» E.G, IS 517272 THE OLDEST ROCK?)

1))
(SIBE-GKEATIR-VAL ((S.NP-V (AND (MFM 1 (ANALYSIS CONCENTRATION)
(* S:BE-GREATER-VAL
MATCHES REQUESTS LIKE
ARE ARLL ALUMINUM
CONCENTRATIONS GREATER
THAN 5 PERCENT?)
)
(EQU 2 BE))}))
(S.,COMP-N (AND (OF (EQU 1 MORETHAN)
(EQU 1 GREATERTHAN}))
{(MEM 3 UNIT)))
-
(BUILDQ (GREATER (# 1 1)
#)
(LIST (QUOTE QUOTE)
(CONS (# 2 2 INTEGER)
(# 2 3 UNIT))))))
(S:BE-LESS-VAL ((S,NP-V (AND {(ME¥ 1 (ANALYSLS CONCENTRATIUN)

(# S:B8E-LESS-VAL MATCHES REQUESTS LIKE 1S THE
AVERAGE CONCENTRATION OF ALUMINUM IN BRECCIAS LESS
THAN 9 PERCENT?)

)
(EQU 2 BE)Y))
{(S.COMP-N (AND (OR (EQU 1 LESSTHAN)
(7QU 1 FEWERTHAN))
(MEM 3 UNIT)))
-
(BUILDQ (LESSVAL (# 1 1)
#)
(LIST (QUOTE QUOTE)
{CONS (# 2 2 INTEGER)
t# 2 3 UNIT))))))
(S:BE-MEVEBER ((3,¥P-V (AKD (EQU 2 BE)
(NOT (OR (EOQU 1 WHQ THING SG)
(EOU 1 WHQ THING PL)
(EQU 1 WHQ THING SG/PL)Y))))
(S,0B3 (AND (NOT (CR (%QU 1 WHQ THING SG)
(EQU 1 WHQ THING PL)
(SQU 1 WHQ THING SG/PL}))
(OR (MEM 1 SET)
(EQU 2 PL)
(EQU 2 SG/PL})))
-2
(PRED (MEMBER (# 1 1)
{# 2 1 SET?))

; <WEBBER>RULES ,WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:14

(»« S:BE-MEMBER MATCHES QUESTIONS OF THE FORM IS X A
¥Y? AND ARE X'S Y'S? E.G, 15 $108083 A BRECCIA?)

)
(S:BE-ME[BER* ((S,NP-V (E
(S,0BJ (iFE
->
(OUOT: (MEMBER* (# 1 1)
2 1))

U 2 B8E))

Q
M TYPE))

(» StBI~NMEINMBEK* MATCHES QUZSTIONS OF THE FORM WHAT
KTHD OF X IS Y? AND IS Y A TYPE OF X? E,G, WHAT KIND
OF ROCK IS S12.:37)

Yy
(S:DCL ((S.DCL=-S T)
-
(PRZD (# 1 1)

(x« S:DCL, S:InP, S:NEG, S:WHQ, AND SIYES=NC MATCH S
NODES OF THE F0n&M (S (DCL (S ,ee)))o

(S {IMP (5 saes)))e (S (NEG

'S <es)Y), AND (S (9 (S ...))), OIHER 2CSSIBLE DE=P
cTRUCTURES FOK SENTENCES THAT THE PARSER MIGHT BE
RZQJIRED T0O PRODUCE,)

]
(S:IMP ((S.IMP-5 T)
-
(PFEZD (DO (# 1 1Y))¥))
(SINEG [(S,NEG-5 T)
-
(PETP (NOT (1 . 1)))))
(StNPY (({S.NPQ T)
-
(PETDN (4 1 1 REFS?) (* S:NPQ MATCHES NOUN
+HRASE QUESTIONS, E,.G,
WwAICH BARIUM ANALYSES?)
Y
(S:NPU ((S.NPU T)
-
(PRUD (PRINTOUT (% T REFS?YI)Y))
(S:QREL (((S (CREL))
™)
-2
(CUOTE (# C SRULLS)

—

« SIQRFPL MATCHES RELATIVE CLRUSES DERIVING FROMN THE
SURFAC STEUCTUR® VERB PHRASES OF WH-QUESTIONS,)

; <WEBBER>RULES WRITEUP;7 SUN 11-JUN-72 12:129tH PAGE 1:15

)
(S:QREL-NEG (((S (OR%XL N£G))
T)
-
(QUOTE (NOT (# ™ SKULES)) (* S:QREL-NEG DOES THE
SAMT POR WH-QUESTIONS
PHRASED IN THE
NEGATIVE,)
M)
(SSWHQ ((S.0-S (LEAFMEMB P (QUOTE (WHQ WHICHQ WHEN WHERE WHY HOW
HOWMANY))))
-
(PRZD (# 1 1))))
(S:YZS/NO ((S,0-5 (NOT (LEAFMEMB P
(QUCTE (WHQ wHICHQ WHEN WHERE WHY HOW
HOWMANY)) YY)
-
(PRED (TEST (# 1)))))
(SS3F ((S,NP-V ({sCU 2 BE))
(5,08Jd (OR (EQU 1 WHQ THING SG)
(FOU 1 WHQ THING PL)
(EQU 1 WHQ THING SG/PL)
(EQU 1 WHAT)))
->
(PRED (PRINTOUT (1 . 1))

{+ SS3* MATCHES QULSTIONS OF THE FORM WHAT IS ...
AND WHAT RERE ,.,7)

)}

(AND (MEN 1 INTEGTER)
(FOU 2 BE)))

1S,COMP (AND (OR (2QU ' AT LoRST)
(20U * AS MAUNY AS)
(20U - ATLERST)
(EQU i A3MANYARS))

(A7 2 INIEGERY))

)
(8532 ((E.,Mp-V

-2
(PRFL (NOT (GPREART-R (2 + 2)
(1 o 1Y)
(SS3 (S, NP-V (YD (MEN 1 INTEGGHE)
(TOU 2 BE)))
(S,C0%P (ALD (DR (ZOU . HORE THAN)
(20U ° MOREIHAN))
(MEY 2 INTEGEER)))
->
(PRED (GREATER (1 ,)

c.1l7

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29:d PAGE 1:16

(SS34 ((S,NP-V (AND (MEM 7 INTEGER)
(ZOU 2 BE)))
(S.COMP (AND (EQU 1 EXACTLY)
(MEM 2 INTEGER)))
->
(PRED (EQUAL (1 . 1)
(2 . 2)))))
(SS35 ((S.NP-V (AND (MEM 1 INTEGER)
(EQU 2 BE)))
(S.COMP (AKD (OR (EQU 7 FEWER LHAN)

(EQU LESS THAN)
(EQU 1 FEWERTHAN)
{EQU 1 LESSTHAN))
(MEM 2 INTEGER)))
-3

(PRED (GREATER (2 . 2)
(1«)N
(5536 ((S.NP-V (AND (MEM 1 INTEGER)
(FOU 2 BEZ)))

{S.COMP (AND (OR (EQU * AT MOST)
(EQU 1 ATMOST))
(MEM 2 INTEGER)))

->
(PRED (NOT (GREATER (1 . 1)

(2 . 2)))»))
QU 2 BE)
YU 2 EXIST)))

(SS471 ((S.NP-V (OR ({
(
-

(PEFD (EXIST (1 . 1))

(= 8547 MAICHES REQUESTS OF THE FORM IS5 THERE AN X?
AND ARE THEEE Y'S?)

)))
)
(LISPXPRINT (QUOTIFR (R: THULZS)) T)
(RPAQQ TRULZS (TOPIC\ADJ 10PIC\ADJ-N TOPICN\ADJ-NsR TOPIC\ADJ,NP
TOPICN\AND-NP TOPICN\AND-S TOPIC\ESP [OPIC\N TOPIC\NOM TOPIC\NR,S
TOPIC\NR_NP TOPIZ\NOT-#P TOPIC\NOT-S TOPIC\NPR TOPIC\OR-NF TOPIC\OR-S
TOPIC\PP TOPIC\REL TCPIC\S,COMPL TOPIC\S.NP TOPILIC\S,0BJ TGPIC\S,PpP
TOPIC\S.V TOPIC\TERM TOPIC\TERM2 TOPIC\AUTHOR TOrIC\AUTHOR2
TCPICA\NP,COMPL TOPIC\PP,COMPL TOPIC\V-INTHANS TO;IC\V-TRANS
TOPIC\V-TRANS2 TOPIC\FMPHASIS TOPIC\ADJ,SUPER TOLIC\ADJ.COMP))
(DEFINEG

[TOPIC\ADJ
AND
(NE,ADJ (AND (NOT (MEM DOCUMENT))
(NOT (EQ (CAR (# 1))
(QUOTE NP})))
oT (MEHN PRDDING))))
1 1 TERMY)]

7 <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:292°N

[TOPICN\ADJ-N
OR
(NP.ADJ-N (NOT (AND (CR (MEM 1 DOCUMENT)
(MEM 1 PADDING))
(MEM 2 DOCUMENT))))
(OR (NP,PP T)
(NF,REL T)
(NP,COMPL T))
-> (ADJPHRSE (QUGTE (# & IDENTITY))) J

[TOPIC\ADJ-NPR
OR
(NP,NPR T)
(NP.ADJ T)
(OR (NP,PP T)
(NP,REL T)
{NP.COMPL T))
-> (ADJPHRSE (QUOTE (# 2 IDENTITY))) J

[TOPIC\ADJ,NP
AND
(NP,AiDJ, NP T)
-> (QUOTE (# 1 1 TOPIC)) 3

[TOPICNAND-NP
AND
(NP.LND T)
-2 (QUOTE (# 1 1 TOPRPIC))]

[TOPIC\AND-S
AND
{(S.AYD T)

-> (QUOTE (# 1 1 TORIC)))

[TOPICN\ESP
(NP,aDVP (MEX 1 TRANSADV))
-> (*FLAG (QUOTE (# ° 2 TOPIC)))

[TOPIC\UW
(WP.N (AWND (WOT (MEM * PADDING))
(0T (¥EM 1 DOCUMENT)Y)))
>

[TOPICANON
(KP.N M T)
-> (QUOTE (# 1 i TUPLIC)))

[TOPICA\NR,S
(NP.NL.S T)
-> (QUUTE (4 1 1 ToprIC))]

PAGE

1:17

; <WEBBER>RULES.WRITEUP;7

[TOPIC\NR,NP
(NP,NR,NP T)

-> (QUOQTE
[TOPIC\NOT-NP
(NP.NEG T)
-> {QUOTE
[TOPICA\NQT-S
{S.NEG T}
-> (QUOTE
[TOPICAN\NPR
(NP ,NPR T)
-> (QUOTC
[TOPICNOER-NP
OR
(NPL,OR T)
-> (QUOTE
fTOPIC\OR-~S
OR
(S.CR T)
~-> (QUOTE
[TOPIC\PP
AND

(CR (NP,PP (NOT

(NP,PP.AND,FP

-> (QUOTE
[TOPICA\REL
AND
(NP,REL T)
-> (QUOTE
{TOPIC\S,.COMPL
(S.,COMPL T)
-> (QUOTE

{TOPIC\S.NP
(S.NP (AND (HOT

(80T
(NOT (S,PRO T}))
-> (QUOTE

(4 1 1 TOQPIC))]
(NOT (# 1 TOPIC)))
(NOT (# i 1 TOPIC)))
(# 1 1 TERM))]

(# 1 1 TOPIC))]

(# 1 1 TORIC)Y))]
(EQ (CAADDR (# 2))

(QUOTE COMPL))))
(N0T (EQ (CAADDR
(QUOTE

(# 1 2 TOPIC)) 1]

(# 1 1 TOPIC)Y)Y]

(# 1 1 TOPIC))]
(4%¥ 1 PADDING))
(AE% * DOCUMENT))))

(¢ 1 1 TOPIC))]

SUN 11-JUN-72

]

12129EM

(¢ 2))
COMPL)))))

PAGE

1:18

; <WEBBEEK>RULES,WRITEUP,;7 SUN 11-JUN-72 12:290M PAGE 1:19

[TOPIC\S,CBJ
(OB (S.0BJ (AND (NOT (MEM 1 PADDING))
(NOT (MENM 1 DOCUMENT))))
($.08J,REL T))
-> (QUOTE (# 1 41 TORIC)) 1]

(TOPIC\S,PP
AND
(OR (S.PP T)
(S.PP,AND,PP T})
-> (QUOTE (# 1 2 TOPIC))]

[TOPIC\S,V
(S.V NIL)
-> (LIST (PACK (NCONC (QUOTE (# 1 1 TERM)) (QUOTE (ING)))))

[TOPIC\TERM
(OR (NP,¥ (AND (LESSP (LENGTH (KEYPHRASE (LIST P)))
5)
(GREATERP (LENGTH (KEYPHRASE (LIST P)))
)
(NOT (MENM 7 PADDING))
(NOT (MEM ' DOCUMENT))))
(NP,NPR (AND (LESSP (LENGTH (KEYPHRASE (LIST P)))
£)
(GREATERP (LENGTH (KEYPHRASE (LIST P)))
13))
(NOT (NP,RFL T))
-> (KEYPHRASE (LIST (QUOTE (# © ILDENTITY))))]

[TOPIC\TERM2
(KP.N (AND (L®SSP (LiNGTH (KEYPHEASE (L1ST P)))
5)
(GREATERP (LENGTh (KEYPHRASE (LIST P)))
1)
(OR (MEM 1 PADDING)
(MEM 1 DOCUMENT)Y)))
(NP,ADJ (AND (NOT (MEN PADDING))
{NCT (MEM DOCUMENT))))
(NOT (NP,REL T))
-> (KEYPHRASE (LIST (QUOTE (# ¥ IDENTITY))))]

[TOPICNAUTHOR
AND
(0K (S.AND.wPEF T)
{S.NPR T))
(S.V (MEM 1 WRIT®))
-> (AUTHOR: (QUOTE (# 1 1 TERM))) 1]

; <WEBBER>RULES WRITEUP;7 SUN 11-JUN-72 12:29pM PAGE 1:29

[TOPIC\AUTHOR?2
AND
(NP,N (MEM 1 DOCUMENT))
(NP,PP,NPR (EQU 1 BY))
-> (AUTHOR: (QUOTE (# 2 2 TZRM)))]

[TOPIC\NP,COMPL
(NP,CCMPL T)
-> (QUOTE (# 1 1 TORIC))]

[TOPIC\PP,COMPL
(NP,PP,COMPL T)
-> (QUOTE (# 1 1 TOPIC))]

[TOPIC\V~-INTRANS
(NOT (S,08J0 T))
(§.V T)
-> (APPEND (LIST (QUOTE V:)) (QUOTE (# 2 1 TERM))) 1

[TOPIC\V-TRANS
(S.0BJ (NOR (MEMB (QUOTE AND)
(# 1))
(MEMB (QUOTE OR)
(# 1))
(S.V T)
-> (APPEND

(APPEND (LIST (QUOTE VP:)) (LIST (NFLCT-ING (CAR
(QUOTE (# 2 1 TERMN)})))

y) (ADJPHRSE (QUOTE (# 1 % IDENTITY))))]

[TOPIC\V-TRANS2
OR
(OR (S5,0BJ.AND T)
(S.0RJ.OR T))
(S.V T)
-> (ARPPEND (APPEND (LIST (QUOTE VP:)) (LIST (NFLCT-ING (CAR
(QUOTE (7 2 1 Tu2¥)))))) (ADJPHRSE (QUOTE (# 1 1 IDENTITY))))]

[TOPIC\EMPHASIS
(NP.PP (MEM 2 EMNPHASIS))
(NP,PP,PP T)
-> («FLAG (DUOTE (# 2 2 TOPIC)))

[TOPIC\ADJ,SUPER
AND
(NP,DET,POSTART (MEMB (QUOTE SUPERLATLIVE)
(CADR (# 1))))
(NP.N T)

-> (APPEND (LIST (NFLCT-ADJ (CADR (QUOTE (# 1 1 TERM))) (QUOTE

SUPERLATIVE))) (QUOTL (# 2 TERM)Y))]

; <WEBBFE>RVULES ,WRITEUP;7 SUN 11-JUN-T72 12:129kN PAGE 1:21

[TOPIC\ADJ,.COMP

AND

(NP.ADJ.COME T)

(NP.N T)

-> (APPEND (LIST (NFLCT-ADJ (CAR (QUOTE (# 1 1 TERM))) (QUOTE

COMPARATIVE))) (OQUOTE (# 2 TERM)Y)]
)
(LISPXPRINT (QUOTE (V: N®WRULES)) T)
(RPAOQ NEWRULES (N:AGF N:AGE' N:ANALYSIS N:AVERAGE N:AVG-CONC? N:BASALT
N:CONCENTRATION MN:CCRETUBL N:DOCUMENT N:;DUST N:ELT N:GABBRO N:HALOGEN
N:LINE# N:MAJOR-ELT N:MAXIMUM N:MINERAL NIMINIMUM N:MODAL-ANALYSIS
N:MODAL-CONC N:NUMBLR N:OLDEST N:ONE N:ONEOYF N:ONES N:ONE3-OF-PRO
N:PHASE M:RARE/EARTH N:RATIO N:ROCK N:ROCKTYPE N:SAMPLE H:SAMPLETYPE
N:SPEC-ACT N:TYPEA N:TYPEB N:TYPZC N:TYPED R:ANALYSIS-REF R!ANALYSIS-TAG
R:AROUND R:BIBLIOGRAPHY R:DOC-ON R:ELT#1 R:ELT#2 R:GLASS R:GREATERVAL
R:LESSVAL R:N-DCC R:CNE R:ONEOF R:ONES R:PHASE R:PHASE#2 R:ROCKTYPE
R:SAMPLE-WITH R:SAMPLE-WITH~COMP R:SAMPLETYPE REFRULE REFRULE? S:ADD
S:ADDLINF S:ANALYZE S¢AND S:B&E-ABOUT S:BE-IN S:BE-TN2 S:BE-LNTERESTED
S:CHANGE S:COMMON S:COHC:KN S:DELETE S:DELETE® S:DISCOVER S:EDIT S:GIVE
S:GREAT S:T-NEED S:LIKE S:0LD S:OR S:PAPER-HAVE SIPRRTAIN S:POSSESS
S:PRINTFILE S:REFER S:SANPLE-BE-COMPOSED S:SANPLE=CONTAI:
S:SAMPLE-HAVE#1 3:SAMPLE-HAVE®2 S:SEARCH S:SORT))

(DEFINEV
(NSAGE ((NP,N (ECU 1 A3GE))
(NE.PP (¥Zn 2 3ANPLE))
-2
(SSUNIONF (AGE (® 2 2 S3:ET)) (» =.G, THE ARGE OF EACH
TYP-/B ROCK)
)))

(NSAGE' ((NP.N (2QU 71 AGZ)
(NP,ADJ (MEM 1 CL

(NP,PP (OR (MEM 2

({SAMPL

)
0CK))

SAMPLE)

EP (HERD (= 2)))))
-

{SSUNIONF (aGE (# 3 2 SSET)

(# 2) (*# ©,6. THE K-AR AGE OF

EACH TYPE/E ROCK)

)))

; <WEBBER>RULES_,WRITEUP;7 SUN 11-JUN-72 12329PH PAGE 1:22

(N:ANALYSIS ((NP,N (MEM 1 ANALYSIS))

(NOT (NP,ADJ (EQU 1 MODAL)))

(OR (NP.PP (MEM 2 (SAMPLE ROCK)))

(NP.PP,PP (MEM 2 (SAMPLE ROCK)))
(NP.PP,PP.PP (MEM 2 (SAMPLE ROCK)))
(DEFAULT (2 NP (DET ALL)

(N SAMPLE)

(NU PL))))

(OR (NP.PP (MEM 2 (PHASE MINERAL)))

(KP.PP.PP (MEM 2 (PHASE MINERAL)))
(NVP.PP,PP,PP (MEM 2 (PHASE MINERAL)))
(NP.ADJ#2 (MEM 2 (PHASE MINERAL)))
(NP.PP.ADJ-N (AND (GR (EQU 2 FINE)
(EQU 2 CUARSET))
(MEM 1 DUST)))
(DEFAULT (2 NP (NPR OVERALL))))

(OR (NP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.PP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP.ADJ#2 (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(DEFAULT (2 NP (DET EVERY)

(ADJ MAJOR)
(N ELEMENT)
(NU §G))))
(OR (NP.ADJ (EQU 1 CHEMICAL))
(DEFAULT (NPR NIL)))
-
(SSUNTONF (TLATALINE (WHQFILE (% 3 2 SSrT))
(# 3 2 SSET)
(% 4 2)
(# 5 2 SSET))
(¢« 2,6, ANALYSES OF
KRYPTON IN TYPE/B ROCKS)
1))
(N:AVERAGE ((NP,N (MiM 1 (MEAN AVERAGE)))
(§P,BP (MEM 2 (QUANTITY)))
-2
(QUGTE (# 2 2 AVERAGF)

(* N:AVERAGE INVOKES THE RULE DIAVERAGE ON THE NP
HANGING OFF TH:S NCDE HEADED BY AVERAGE)

1))
(NSAVG-CONC? ((NE,N (MEM 1 (CONCENTRATION)))
{N®P.DET (AND (zZQU 1 THE)
(EQU 2 SG)
(AVERAGE?)))
-
(QUOTTE (# .. AVERAGE)

C.24

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-T72 12:29.M PAGE 1:23

(= NIAVG-CONC? CAUSES A MESSAGE TO BE :RINTED OUT TO
THE USER, ASKING IF HE MEANT BY 'THE CONCFRNTRATION',
'THE AVERAGE CONCENTRA~ TION'' THE RULE MATCHES It
THE USFR ANSWERS 'YES' AND INVOKES THE RULE
D:AVERAGE,)

)
(N:BASALT ((¥P.,N (MEM 1 (BASALT)))
->
(OUOTE (SEQ TYPEAS))))
(N:CONCENTRATION ((NP,N (MEM 7 (CONCENTRATION)))
(NOT (NP.,ADJ (EQU 1 MODAL)}))
(OR (NP,PP (MEM 2 (SAMPLE ROCK)))
(NP,PP.PP (MEM 2 (SAMPLE KOCK)))
(NP,PP.PP,PP (MEM 2 (SAMPLE ROCK)))
(DEFAULT (2 NP (DET ALL)
(N SAMPLE)
(NU PLY)))
(OK (NP,PP (ME® 2 (PHASE MINEKAL)))
(NP,PP,PP (MEM 2 (PHASE MINERAL)))
(NP.PP.PP,PP (MEM 2 (PHASE MINERAL)))
(NP.ADJI®¥2 (MEM 2 (PHASE MINERAL)))
(NP,PP,ADJ~-N (AND (OR (EQU 2 FINE)
(EQU 2 COARSE))
(MEM 1 DUSTY))
(DZFAULT (2 NP (NPR OVERALL))))
(OR (NP.PP (MEN 2 (ELEMENI OXIDE ISOTOPE)))
(NP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))
(NP, PP.PFP,PP (MEM 2 (ELEMENT OXIDE ISOTOPE))})
(1iP ADJ#2 (MEM 2 (ELEMENT OXIDEI ISOTOPE))))
-2
(SSUNIONF (DATALINE (WHQFILE (# 3 2 SSET))
(# 3 2 SSET)
(# 4 2)
(# 5 2 SSET))
(» 7,G, THE
CONCENTRATION OF KRYPTON
IN TYPE/B SAMPLES)
)
(N:CORETUBF ((OR (NE.,. (*EM 1 (CORETUBE)))
{(NP.ADJ-N (EQU 1 CORE)
9 B
-> '
(QUATE (S7y CORELUBES)Y)))
(N:DOCUMENT ((NP.,¥ (%E® * DOCUMEXNTY)
(NOT (NP.ADJ (MEMN % LUNAR)))
->
(QUOTE DCCUFENT)))

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29cM PAGE 1:24

(N:DUST ((NP,N (OR (MEM 1 (SO1IL))
(EQU 1 DUST)
(EQU 1 FINE)))
-2
({OQUOTE (SEQ DUSTS))))
(NSELT ((NP_N (EQU 1 ELEMENT))
(NOT (NP,ADJ (EQU * MAJOR}}))
-
(QUOTE (SEQ ELEMENTS))))
(N:GABBRO ((NP,N (OR (MEM (GABRROY})
(EQU . MICROGABBRO)))
-
(OUOTE (8%
(N:HALOGEN ((NP,N (Mg
-2
(QUOTE (SEQ HALOGENS)Y))Y)
(N:LINE# ((NP.N (EQU 1 NUMBER))
(NP.,ADJ (EQU 1 LINE))
(NP,PP (AND (EQU : OF)
(MM 2 ANALYSIS)))

Q TYPEBS))))
M 1 (HALOGEN)))

-
(QUOTE (SEQL (# 3 2)))))
(N:MAJOR~ELT ((NP,N (EQU 71 ELEMENT))
(NP,ACJ (EQU MAJORY)
-
{QUOTE (SEO MAJORELTS))))
(N:MAXIMUM ((NP,N (OR (EQU 7 MAXIMUM)
(AND (MEM 1 (BIG))
(SUPERLATIVE 1))))
(NP,PP (MEM 2 (QUANTITY)))
-
(QUOTE (# 2) MAXIMUM)

(# N:MAXIMUM INVOKES THE RULE D:MAXIMUM ON THE NP
HANGING OFF TH¥ NODE HEADED BY f'MAXIMUM',

*MAXINUM® CAN THEN ACT LIKE A FUNCTION, RATHER THAN
A SET,)

)

(NeMINERAL ((NP.N (EQU 1 MINERAL))

-

(QUOTE (SEOQ MINERALS))))
(N:MINIMUM ((NP,K (CK (EQU -~ MINIMUM)

(ALD (MEM 1 (LITTLE))
(SUPERLATIVE 1))))

(NP,PP (MTM 2 (QUANTITY)))

- >

(QUOTE ¢
YY)

£ 2 7 MINIMUM) (* SEE N:MAXIMUM)
)

; <WEBBER>RULES WRITEUP;7 SUN 11-JUB-72 12:29FN PAGE 1:25

(N:MODAL-ANALYSIS ((NP,N (OR (MEM 1 ANALYSIS)
(EQU 1 MODE)))
(OR (NP,ADJ (EQU 1 MODAL))
(NP.N (EQU 1 MODE)})))
(OB (NP,PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)
(8 SAMPLE)
(BU 5G))Y))
(OF (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE
ISOTOPE)))
(NP.ADJ#2 (MEM 2 (PHASE MINERAL ELEMENT OXIDE
ISOTOPE))))
-2
(SSUNIONF (DATALINE (WHQFILE (# 3 2 SSET))
(# 3 2)
OVERALL
(# 4 2))
(* £,G. MCDAL ANALYSES
OF OLIVINE IN TYPE/C
ROCKS3)
1))
(N:MODAL-CONC ((NPF.,N (MEWM (CONCENTRATION)))
(OR (NP,PP (MEM 2 (SAMPLE)))
(NP,PP,PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)
(N SAMPLE)
(MU SG))))

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE)))

(NP, ADJ#2 (MEM 2 (PHASE MINERAL CLEMENT OXIDE
ISOTOFE))))
->
(SSUNIONF (DATALINE (WHQFILE (# 2 2 SSET))
(# 2 2 SSET)
OVERALL
(# 3 2)))))
(N:NUMBER ((NP.N (EQU 1 HUMBEK))
(xp.PP (EQU 1 OF))
->

(OUOTE (# 2 2 NUMBER)

(» N:NUMBER INVOKES D:4UMBXR ON THE NP DEPENDE.T QN
'NUMBFR', E.G. 'THE WUMBER OF TYPE/A SAMPLES' IS

IKTERPRFTED RS SFulL (NUMBER X /

(sST¢ TYPEAS): T)))

)
(N:OLDEST ((NP,N (AND (MEM - (OLD))
(SUPERLATIVE 1}))
(NP.PP (MEiM 2 (SAUPLE)))
-2
({OUOTL (# 2 2 OLCEST)

; <WEBBER>RULES ,WRITEUP;7 SUN 11-JUN-72 12:29¢M PAGE 1:26

’

(* N:OLCESZ INVOKES THE RULE D:OLDEST ON THE NP
DTPENDENT ON "OLDEST", LIKE N:MAXIMUM AND NINUMBEK,
IT ALLOWS "OLDEST" TO ACT LIKE A FUNCTION, RATHER
THAN A SET)

)Y)
(N:ONE ((NP,PRO (EQU 1 ONE))

-2
(PROGN (SETQ ANTZVAR (ANTECEDANT (QUOTE (# p IDENTITY)))

{%* NIONT® MATCHES THE ANAPHORIC PRONOUNS 'ONE' AND
'CNES"', THE INTERPRETATION DEPENDS ON THE CLASS OF

THT ANTSCENDAHT.)

)
(MAPC (SCOPEVARS ANTEVAR)

(FUNCTION ANTEQUANT))
(NEWCLASS ANTFEVAR))))
(N:ONEOF ((NP,PRO (FQU 1 GNE))
(NP.,PP (EQU 1 OF))
-2

(QUOTE (# 2 2 WRULES)

(* N:ONFOF MARTCHES THE PROLOUNS 'ONE' AND 'ONES'
WHEN FOLLOWED BY A PARKTITIVE COWNSTRUCTIN
FXPRESSING THE SET, E,G, 'ONE OF THE TYPE/B ROCKS,'
THE INTERPFETATION IS THE CLASS OF THE DEPENDEKLT

pl)

IR
(N:ONES ((NP,PRO (EWU 1
(NP.PP (AND (EQU or)
(350 (CAADR (# 2))
(QUOTE PRO))}))
-
(QUOTE (® 2 2 NEULES)

ES IS LIKE N:ONEQF, BUT IS USED TO MATCH

N
AL PARTITIVES CONSTRUCTED BY THE :ARSER,)

(» N
SPECI

)
(

P grag

(N:ONES-OF-PRO (

)
'F.PRO (EQU 1 OQONES))
P.PP (58D (EQU 1 OF)
(EQ (CAADR (# 2))
{QUOTE PRO))))

(N

->
(QUOTE (¢ 2 2)

; <WEBBFE>RULES ,WRIIEUF;7 SUN 11-JUN-72 12:292NM PAGE 1:27

(*# NIONES-OF-PRO MATCHES NODES WITH PARTITIVE
CONSTRUCTIONS, WHERE THE HEAD OF THE PARTITIVE IS
ITSELF ANAPHORIC,)

1))
(N:PHASE ((NP.N (EQU 1 PHASE))
-2
{(QUOTE (SEQ PH&SES))))
(N:RARE/FARTH ((NP.N (EQU : RARE/EARTH))

(QUOTL (S¥Q RAKE/EARTHS))))
(NSRATIO ((NP.N (EQU 1 RATIO))
(OR (NP,ADJ.N/N (AND (MEM 1 (ELEMENT 1SOTQOPE OXIDE))
(MEM 2 (ELEMENT LSOTOPE OXIDE))))
(XP,ADJ=-ADJ (ALD (MEM 1 (ELEMENT ILSOTOPE OXIDE))
(MEM 2 (ELEMENT 1S50TOPE OXIDE)Y))))
(OR (XP,PP (AND (OR (EQU 1 IN)
(EQU 1 FOR))
(MEM 2 (PHASE MINERAL))))
(NP,PP.PP (AND (OR (EQU 1 IN)
(EQU 1 FOR))
(MEM 2 (PHASE MINERAL))))
(DEFAULT (2 NP {(NPR OVERALL))))
{OR (NP,PP (AND {(OR (EQU 1 IN)
(EQU 1 OF)
(EQU 1 FOR))
(MEM 2 (SAMPLE ROCK)}))
(NP,PP,PP (AND (OR (EQU 1 IN)
{EQU 1 OF)
(EgU 1 FOR))
(MEM 2 {SAMPLE RCCK))))
(DEFAULT (2 NP (D:sT EVERY)
(¥ SAMPLE)
(FU SGY)))
-2
(APPLY (FUNCTION SSUNIONF)
(LIST (RUILDY (RATIO (QUOTE #)
{QUOTE &)
(# 4 2 SSET)
(# 3 2 SSET))
(TABFCRM (# 2 1 HEAD))
(TABFORM (# 2 2 HEAD)Y)))

» E.5, POTASSTIUM / RUBIDIUM RATIOS INTERPRETS AS
SSUNIOZK X1 / (3SEQ SAMPLES): T 3
(RATIC (QUOTE X20) (QUUTE RB) X1

{OUOTE OVERALL))))

; <WEBBEE>RULES,WRITEUP;7

)
(OR (EQU 1
(EQU =

(N:ROCK ((NP.N
->
(OUQTE

(N:ROCKTYPF ((NP,N
(OR

(MEM 1
(NP.PP (AND

(NF.ADJ
->
(QUOTE
{(CR (NP,N (FQU
(NPLADJI-N

(NISAMPLE

{(CR (HNP,RDJ

(DEFAULT

(FQU 1

(1
->
(OUOTE

(N:SAMPLETYPE ((NP,N

(CR (NP,PP

(MEA (

(NP,ADJ

-2
(DUOTE (S=Q
({NP,¥ (EQU 7
(NBE,ADJ (EQU
(NE,PP (MEM 2
(OR (NP,.PP

(NSSPEC-aACT

{DEFAULT

->

(QUOTE (DATRLINGE

(EQU

ADJ

{EQU 1

SUN 11-JUN-72 12:29:H PAGE 1:28

ROCK)
VOLCANIC)Y))

(SEQ VOLCANICS))))
(TYPE)))

(EQU 1 OF)

(EQ (HEAD (# 2))

(QUOTE ROCK))
(# 2)

(QUOTE USED)
T)))

1 RQCK})))

(TAG

(SEQ ROCKTYPES))))
SAMPLE)Y)
(AND

(EQU 1 LUNAR)

(EQU 2 MATERIAL))))
LUNAR))

NIL)))

(SEQ SAMPLES))))
TYPE))Y)
(AND

{EQU
(zQ

1 OF)

(HEAD (# 2))
(QUOTE SAMPLE))
(# 2)

(QUGTE USED)
T)))

SAMPLE)))

(TAG

SAMPLETYPES))))
ACTIVITY)Y)
SPECIFIC))
{(ISOIOPE))Y)
(MEM 2
(NP.PP.PP (MEM 2
(2 NP

(SAMPLE)))
(SAMPLE)))
(DET EVERY)
(N SAMPLE)

(NU 8G))))

(WHQFILE
(8 4 2)
OVERALL
{(m 3 2))

(# 4 2))

(#« 2,6, THE SPECIFIC
ACTIVITY OF CO56 IN
$12283)

C.30

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29FM PAGE 1:29

(N2TYPEA ((NP.N (OR (EQU 1 PARTICLE)
(EQU 1 ROCK)
(EQU 1 SAMPLE)))
(OR (NP,ADJ (EQU : TYPE/A))
(NP,ADJ=ADJ {(AND (EQU 1 HIGH)
(OR (EQU 2 ALKALI)
(EQU 2 ALKALINE)
(MEM 2 (RUBIDIUM)))))
(NP.ADJ=-ADJI-ADJ (AND (EQU 1 FINE)
(EQU 2 GRAINED)
(OR (EQU 3 IGNEOUS)
(EQU 3 CRYSTALLINE)))))
->
(QUOTE (SEO TYPEAS))))
(N:TYPEB ((NP,N (OR (EQU 1 PARTICLE)
(EQU 1 SAMPLE)
{EQU 1 ROCK)))
{OR (NP,ADJ (EQU TYPE/B))
(NP,ADJ~ADJ (AND (TQU 1 LOW)
(OR (FQU 2 ALKALI)
(EQU 2 ALKALINE)
(MEM 2 (RUBIDIUM)))))
(NP ADJI~-ADJ-ADJ (AND (EQU 1 COARSE)
(EQU 2 GRAINED)
(OR (EQU 3 CRYSTALLINE)
(EQU 3 IGNEOCU3)))))
-2
(QUOTE (SEQ TYPEBS))))
(N:TYPEC ((OR (NP,N (OR (EQU " BRECCIA)
(EQU © MICROBRECCIA)))
(NP,ADJ~N (AND (OR (EQU 2 PARTICLE)
(EQU 2 SAMPLE)
(EQU 2 ROCK))
(EQU 1 TYPE/C))))
-
(CUGTE (SEQ TYEPECS))))
(N:TYPED ((OR (NP,N (OR (EQU 1 SOIL)
(£QU % DUST)
(£QU 7 FINE)))
(NP,ADJ-N (AND (OR (EQU 1 PARTICLE)
(EQU 1 SAMPLE)
(EQU 1 ROCK))
(EQU 1 TYPE/D))))
->
{QUOTE (SEQ DUSTS))))

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29rH PAGE 1:3¢

(R:ANALYSIS-REF ((NP.N (MEM 1 (ANALYSIS)))

(OR
(NP,PP
{DOCP (CADR (ASSOC (QUOTE K:zR)
(CDR (CONSTITUENTS
(#.2)))))))
(NP,PP,PP

(DOCP (CADK (ASSOC (QUOTE N:R)
(CDR (CONSTITUENTS
(g 2)1))N
(NP.ADJ#2 (DCCP (CADR (# 2)))))
-
(QUOTE (REFs» X (# 2 2)))
(R:ANALYSIS-TAG ((NP.N (MEM 1 (ANALYSIS))
(OR (NP.PP,ADJ-NPR (AND

))
)
(EQU 1 TAG)
(NUMBER: (CADR (# 2)))))
(NP,PP,PP,ADJ-NPR
(aND (EQU 1 TAG)
(NUMBERP (CADR (# 2))))))
-
(QUOTE (TAG* X (# 2 2)))))
(R:AROUND ((NP.N (MEM 1 ANALYSIS))
(NP,PP,COMP (AND (UK (EQU 3 AROUND)
(EQU 3 APPROXIMATELY))
(MEM 2 (FLEMENT ISOTOPE CXIDE))}))
-
(BUILDQ (AROUNDVAL X #)
(LIST (QUOLE OUOTE)
(CONS (# 2 & INTEGER)

{# 2 5 UNIT)))
(* R:ABRCUND MATCHES NP'S LIKE 'ANALYSES WITH ARCUND
7 PPM TITanIUM', THE INTERPRETATION OF THL
RESTRICTION TH2T R:ARQYUND PRODUCES IS

(AROUND X (7 ., PPM)), WHERE 'X' REFERS TO THE
ANALYSES,)

)))
(R:BIBLIOGRAPHY ((NP,N (EQU 1 BIBLIOGRAPHY))
(NP,PP (OR (EQU 1 Ou)
(EQU 1 ABOUT)))
-
(QUOTE (ABOUT X (# 2 2 TOPIC)))))
(R:DOC-ON ((NP,N (MEM 1 DOCUMENT))
(NP.RPP T)
-2
(GUOTy (2BONT X {(# 2 2 TOFIC)Y))))

<WEBBER>RULES,WRITEUP;7 SUN 11-JUN-T72 12:29tM PAGE 1:31

-
’

(RZELT#1! ((NP,N (EQU 1 ELEMENT))
(NP,ADJ (AND (MEM 1 (ELEMENT OXIDE ISOTOPE))

(NOT (MEM 1 (SET)))))

->
(QUOTE (EQUAL X (# 2 1)) (*» 2,6, THE UKRANIUM
ELEMENT)

1))

(R:ELT#2 ((NP,N (EOU 1 ELEMENT})
(NP,ADJ,NP (AND (MEM 1 (ELEMENT OXIDE ISOTOPE))
(MEN 1 (SET))))

-
(QUOTE (MEMB X (# 2 1 NRULES)) (» ,6., A RARE-EARTH
ELEMENT)

1))
(R:GLAS3 ({(NP,N (MEM 1 (SAMPLE FRAGMENT PARTICLE)))

{NP.ADJ (EQU 1 GLASS))

->
(QUOTE (CONTAIN X (# 2 1)))))

{R:GREATERVAL ((NP,N (MEM ANALYSIS))
{NP,PP,COMP (AND (Ok (EQU 3 GREATERTHAN)

{EQU 3 MORETHAN))
(MEM 2 (ELEMENT ISOTOPE OXIDE))))
-
(RUILDQ (GREATER X #)
(LIST (QUOTE QUOTE)
(CONS (# 2 4 INTEGER)
(# 2 5 UNIT)))

R:GREATERVAL IS THE ANALOGUE OF R:AROUND FOR
'"GREATER THAN' OR 'MORETHAN',)

(=

PHRASES WITH

)))
1 ANALYSIS))
(EQU 3 LESSTHAN)

(EQU 3 FEWERTHAN))
(MEM 2 (ELEMENT OXIDE ISOTOPE))))

(RILESSVAL ((NP,N (WMENM
(NP,PP,COMP (AND (OR

~>
(BUILDQ (LESSVAL X #)
(LIST (QUOTE QUOTE)
(CCNS (# 2 4 INTEGER)

{(# 2 5 UNIT)))
(* R:LESSVAL 1S THE

ANALOGUE "F R:AROUND FOR
FHRASES WITH 'LESS

THAN' .)

)))
(R:N-DOC ((NP.N (MEM 1 DOCUMENT))
(NP.ADJ,HP T)

-

(QUOTE (ABOUT X (# £ 1 TOPIC)))))

; <WEBBER>RULES,WRITEUP;? SUN 11-JUN-72 12:29:20 PAGE 1:32

’

(R:ONE ((NP,PRO (EQU 1 ONEY})
->
(PROG1 (NEWPX ANTEVAR

{# R:ONE MATCHES THE ANAPHORIC PRONQUN 'ONE',

ITS INTERPRETATION IS THE SET OF RESTRICTIONS ON

THE ANTEAEDANT OF 'ONE' THAT WERE NOT rRODUCED FROM

THE VERB PHRASE. SEE THE FUNCTION DESCRIPTION OF

NIWPX FOR FURTHER DETAIL,)

1))
(R:ONEOF ((NP,PRO (EQU 1 ONE))
(NP.PP (AND (EQU . OF)
(NOT (EQ (CAADR (% 2))
(QUOTE PRO

(* R:ONEOF MATCHES THL PRONOUN 'ONE' WHEN IT
DOMINATES A PARTITIVE CONSTRUCTION WHOSE HEAD IS NOT
A PRONOQOUN, E_,G, 'WHICH ONE OF THE TYPE/A ROCKS',
R:ONEQOF CALLS FOR THE CLASS RESTRICTIONS ON THE HEAD

OF THE PARTITIVE NP.)

)1

-2
(QUOTE (# 2 2 RRULES))))
(R:ONES ((NP.PRO (ZQU 1 ONES))

(NP,PP (AND (EQU OF)
(NEC (CAADR (# 2))

(QUOTE PRO

(# R:ONES IS THE ANALOGUE OF R:ONEOF USED FOR THE
PRONOUN 'ONES' INSERTED BY THE PARSFR FOR DEEP

STRUCTURE PARTITIVES, E.G.
"ALL THE BOYS' IS PAKSED AS 'ALL ONES CF THE BOYS',)

)Y

-2
(CUOTE (# 2 2 RRULES))))
(R$EKASE ((NP,N (EQU 1 PHASE))
‘NP,ADJ (MEM 1 (PHASE MINERAL)))
-2
(QUOTE (EQUAL X {(# 2 1)))))
(R:PHASE®2 ((NP,N (EQU 1 PHASE))
{4P,PP (OR (MEM 2 (SAMPLE))
(SAMPLEP (HEAD (# 2)))))

-2
(QUOTE (CONTRIN (# 2 2 SSET)
X3)1))

; <WEBBER>RULES WRITEUP;7 SUN 11-0UN-72

(R:ROCKTYPE ((NP,ADJ-N (AND (EQU 1 ROCK)

(MEM 2 (TYPE))))

(NP,PP (MEM 2 (SAMPLE}Y))

-2

(QUOTE (MEMBER* (# 2 2)

X)

)))
{((NP,N (MEM SAMPLE))
(NOT (NP.PP,COMP T))
(NP,PP (AND (EQU 1 WITH)
(MEM 2
(AND

(R:SAMPLE-WITH

(CR (NP,PP (EQU 1 IN)

(MENM 2

(NP,PP,PP (AND (EQU 1 IN)

12:2972M

(* L,G,
SAMPLE

PARGE 1:33

THE ROCK TYPE OF
1A883)

(SLEMENT ISOTOPE OXIDE))))

(MINERAL FHRSE))))

(MEM 2 (MINERAL PHASE))))

(DEFAULT (2 NPR NIL)))

-2
(QUOTE (CONTAIN X (# 3 2)
(# 4 2))

1))
((NP,N (MEM 1 (SAMPLE)))
(NP,PP.COMP (AND

(R:SAMPLE-WITH=-COMP

{MEM 2
{OR (NP.PP (MEM 2
(NP.,PP,PP (MEM 2
(DEFAULT (2
->

(QUOTE (CONTAIN' X

(# 3 2)

(# 2 2)

(* T.G.
BERYLLIUM)

(EQU 1 WITH)
(ELEMENT ISOTOPE OXIDE))))
(PHASE MINERAL)))

(PHASE MINERAL)))

NPR NIL)))

(# 2 6 TLRM))

)))
(RND (EQU 1 SAMPLE)
(NEM 2 (TYPE))))
(SAMPLE)))

(R:SAMPLETYPE ((UP,ADJ-N

(NP.PP
-2

(QUCTE

(MEM 2
(MEMBER* (# 2 2)
X))
(REFRULE ((T T)

->

(QUANT (FOR EVEZRY X / DOCUMENT

;PRINTOUT X)))))

(REFRULE? (INTERP P))

((7T
->

(QUOTE (% £))))

(ABOUT X

(* E.G.
MORT
BERYLLIUM IN PLAG)

THAWN

SAMPLES WITH

SAMPLES WITH
6 P¥M

{# @ TOPIC))

7 <WEBBER>RULES,WRITEUP;7

{(S:ADD ((S.Vv (MEM 1

({S.0BJ.NPR7

(ADD)
(AND

{S.PP
->
(PRID

(MEM 2

{APPLY

(‘ E.G-

D7¢-154, @)

1))
((S.INP T)

{S.V (OF

{S:ADDLINE
{EQU
(EQU
(5,0RJ,NPR T)
(OR (S,PP
{S.,0RJ,PF
-
(BUILDO

(CONS

(E.G.

(FUNCTION
(LIST (#

ADD THE LINE

(MFM 2

(APPLY

SUN 11-JUN-72 12:29fHM

))
(SAMPLEP (CADR (# 1)))

(MEM 2 (PHASE MINERAL))

(MEM 3 (ELEMENT OXIDE ISOTOPE))
(NUMBERP (CADR (# 4)))

(MEM 5 (UNIT))

(DOCF (CADR (# 6)}))

(NUMBERP (CADR (# 7)))))

(FILE)))

PRENEWLINE)
2)
1)
2)
3)
4)
5)
6)
73))

(#
(%
(#
(4
(#
(#
(#

NN NN W

(5129823, OVERALL, BE, 6, PPM,

TO APOLLO11)

ADDLINE)
ADD)))

(FILE)))
(MEM 2 (FILE))))

(FUNCTION PRENEWLINE)

(QUOTE #))

(QUOTE (# 4 2))

(QUOTE (# 3 1 TERMN)))
ADD

(*+ S1¢@@3 OVERALL BE 6 PPM D7@-15U4 @)
TO APOLLO11 THE INTERPRETATION IS
(APPLY (FUNCTION PRENEWLINE)

(QUOTE

(APOLLOC11 S1€u@23

PAGE 1:34

UVERALL BPE 6
PPl D78-154 2))Y)))))

; <WEBBER>RULE3,WRITEUP;7 SUN 11-JUN-T72 12:292N FAGE 1:35

(SSANALYZE ((S.NP-V (AND (MEM 2 (ANALYZE))
(COND
((NOT (MEMB (CADR (# 1))

(QUOTE (SOMEONE SOMETHING ANYONE)

}))

(PRIN1 (QUOTE I PRESENTLY IGNORE SUBJECTS

OF THE VZRB)
T)
(PRINT HEAD T))
(T T))))
(S.0BJ (MEM 1 (SAMPLE)))
(S.PP (EQU 1 FOR))
-
(SSUNIOKF (DATALINE (WHQFILE (# 2 1 SSET))
(# 2 1 SSET)
OVERALL
(# 3 2 SSET))

(* E,G, HAS S17423 BEEN ANALYZED FOR KRYPTON? THE

INTERPRETATION IS (TEST (DATALINE
(WHQFILE Si0893) S14383 OVERALL KK)))

)))
(S:AND (AND (S5.AND T)
->
(PRED (# 1 1))))
(S¢BE-ABOUT ((S,¥P (MEM 1 DOCUMENT))

(S,V (ToU 1 BE))

(S.PP (OR (EQU 1 OHN)
(EQU 1 ABOUT)
(EQU 1 TO)
(EQU 1 FCR)))

-
(PREL (EFRINTOUT (# 3 2 EEFS)))))
(StBE~-IN ({S,NP-V (KRND (MEM 2 (BE EXIST OCCUR))
(MEM 1 (ELEMENT OXIDE ISOTOPE PHASE
{OR (S.PP (AND (EQU 1 IN)
(MEM 2 (SAMPLE))))
(s,PP,PE (aAND (EQU 1 IN)
(MEM 2 (SAMPLE)))))
(OR (S,PP (AND (EQU 1 IN)
(MEM 2 (PHASE MINERAL))))
(DEFAULT (2 NPR NIL}))
-
(PRED (CONTAIN (% SET?)
#
#

P
W N
N N

)
)

MINERAL)Y)))

; <WEBBEE>RULES,WRITEUP;7 SUN 11-JUN-72 12:29FNM PAGE 1:36

(S:BE-IN2 ((S.NP,COMP (MEM ~ (ELEMENT OXILE ISOILOPE PHASE MINERAL)))

(S,V (MEM 1 (BE EXIST OCCUR)))
(OR (S.PP (AND (EQU 1 IN)

(OR (MEM 2 (SAMPLE))

(SAMPLEP (HEAD (# 2))))))
(S,PP,PP (OR (MEM 2 (SAMPLE))
(SAMPLEP (HEAD (# 2))))))

(OR (S.,PP (AND (EOU 1 IN)

(MEM 2 (PHASE MINERAL))))

(DEFRULT (2 NPR NIL)))
->

(PRED (CONTAIN' (# 3 2)
#.11)
(# 4 2)
1 2 TERM))

(*x E,G, IS THERE MORE THAN 7 PPM KRYPTON IN 5120237
THE INTERPRETATION IS (TEST

(CONTAIN' (QUOTE S1¢5£3) (QUOTE KR)

(MORETHAN 7 PPM))))

)
((S.V (EQU 1 BE))
(S.ADJ (EQU 1 INTEKESTED))
(S.PF (EQU 1 Iu))
-
(PRED (PRINTOUT (# 3 2 REFS)))))
(SSCHANGE ((S.VY (EQU 1 CHANGE))
(S, IMP T)
(S.08J (MM + FIELDNAME))
($,08J,PF (AND (EQU 1 OF)
(MEM 2 ANALYSIS)))
(OR (S,0BEJ PP (EQU 1 TO})
{S.,0BJ,PE.PP (EQU 1 TO)))

(S:BE-INTEREZSTED

-
(PRED (CHANGEYLINE (# 4 2)
(QUOTE (# 3 1 HEAD))
(QUOTE (# 5 2 HEAD))))Y))
(S:COMMON ((S.NP.V (AND (MEM " (PHASE MINERAL ELEMENT ISOTOPE OXIDE))
(EQU 2 CCMMON)))
{(5.PP (EQU 1 7T0))
-
(PRED (CONTAIN (#® 2 2)
(# 1.1))
(E.3, WHAT PHASES ARE COMMON TO ALL SAMPLES?))))
(S:CONCERN ((S.NP (MEM 1 DOCUMENT))
(S.V (MEM 1 CONCERN))
(S.08J T)
-2
(PRED (PRINTOUT (# 3 1 REFS?)))))

; <WEBBELX>RULES ,WRITEUP;7 SUN 11-JUN-72 12:29:H PAGE 1:37

(S:DELETE ((S.,IMP T)
($.V (EQU 1 DFLETE))
(S.0BJ (MZM 1 ANALYSIS))
-
(PRED (DELETEMLINE (# 3 1)))))
(S:DELETE® ((S.IMP T)
(S.V (EQU 1 DELETE))
(S.0BJ.NPR (LINEP (% 1)))
(OR (S.,PP (MEM 2 (FILE)))
(S,0BJ,PP (MEM 2 (FILE))))
-
(QUOTE (DELETE# (# L 2)
(# 3 1)))
(S:DISCOVER ((NOT (S.IMP T))
(S.V (MEM 1 (DISCOVER CONTAIN)))
(S,0BJ (MEM 1 (ELEMENT OXIDE ISOTOPE MINERAL PnASE)))
(OR (S,PP (MEM 2 (MINERAL PHASE)))
{DEFAULT (2 NPR NIL)))
(OK (S,PP (MEM 2 (SAMPLE)))
(3.,PP.PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET ANY)
(N SAMPLE)
(NU PL))))
(S,EP (CCND
{(NOT (ZWU 1 SOMETHING))
(PRINT (QUOTE I PRESENTLY 1GNORE SUBJECTS OF THE
VERB)
T)
(PRINT HEAD T))
(T T)))
->
(PRED (CONTAIN (® 5 2 SET?)
(# 3 1)
(# 4 2)))))
(S:EDIT ((S.V (EQU 1 EDIT))
($.,0BJ,NPR (LINEP (# 1)))
(OR (S,PP (MEM 2 (FILE)))
(S,0PJ,PP (MEM 2 (FILE))))
-
(PREZD (FDITLINE (# 3 2)
(# 2)
(S:GIVE ((5.V (MEM 1 GIVE))
(S.0BJ T)
(OR (S,IKP T)
(S.0-MODAL ™))

)

->
(PRED (PRINTOUT (# 2 % REFS?)))))
(S:GREAT ((S.NP-V (MLM 2 GREAT))
->
(BRED (# 1 1))))

.
’

<WEBBER>RULES,wRITEUP;7 SUN 11-JUN-72 12:290H PAGE 1:38

(SSI-NEED ((S.NP (EQU 1 I §G))

(S.V (OR (EQU 1 NEED)
(EQU 1 WANT)))
(S.0BJ T)
-
(PRED (PRINTOUT (# 3 1 REFS?)))))

(S:LIKE ((5.V (MEM 1 LIK:))

{¢,0BJ T)
->
(PRED (PRINTOUT (# 2 1 REFS?)))))

(S:OLD ((S.,EKP-V (MEM 2 OLD))

-
(PRID (FOR EVERY X2 / (AGE (# 1 1))
: T ; (PRINTOUT X2)))))

(S:0R (2F {(3,0R T)

->
(PRED (# 1 1)1)))

(SIPAPER-HAVE ((S5,NP (MEN DOCUMENT))

(S.V (EQU 1 HAVE))

{S.0BJ T)

->

(PRED (PRINTOUT (# 3 1 REFS?7)))))

(S:PERTAIN ((S.NP (MEM 1 DOCUNEHNT))

(S.V (MEM 1 PERTAIN))
(S.PP (OR (EOU WITH)
(g0 TO)))

-
(PRED (ABOUT (# 1 1)
(# 3 2 TOPIC)))}))

(S:POSSESS ((S.NP-V (AND (MEWH 1 (WE YOU THEY))

(MEM 2 (POSSESS))))
(S.08J T)
-
(PRED (EXIST (# 2 1)))))

(S:PRINTFILE ((CR (S,IMP T)

(S.0-MODAL T))
{3,V (MEM 1 (GIVE)))
(S,0BJ (MEM (FILEY))
-2
(PRED (PRINTFILE (# 3 1)))))

(SIREFER ((S.NP (MEM 1 DOCUMENT))

{S.V (ZQU * REFER))
(s,PP (EQU 1 T0))
->
{(PKED (ABQUT (= 1)
(# 3 2 TOPIC)))))

(S:SAMPLE-BI-COMPOSED ((S.NP-V (AND (MEM 1 (SAMPLE))

{EQU 2 BE)))
{s.,0BJ.COMP (MEM 1 (PHASE NINERAL)))
->
(PRED (CONTAIN' (# 1 1
(# 2 1
(# 2 2

)
)

TERUY))))

; <WEBBER>RULES, WRITEUP;7 SUN 11-JUN-72 12:292N PAGE 1:39

(S:SAMPLE-CONTAIN (AND (S.NP (MEM 1 (SAMPLE))})
(S.V {OR (EQU 1 HAVE)
(EQU 1 CONTAIN)))
(OR (S.0BJ (MEM 1 (ELEMENT OXIDE ISOTOPE MINERAL)
))
(5¢OBJ,AND (MEM 1 (ELEMENT OXIDE ISOTOPE
MIKERAL))))
(OR (5,0BJ,PP (MEM 2 (MINERAL PHASE)))
(S.PP (MEM 2 (MINERAL PHASE)))
(DEPAULT (2 NPR NIL)))
-
({PRED (CONTAIN (# 1 1 SET?)
(# 3 1)
(# & 2)))))
(S:SAMPLE-HAVE#1 ((S.NP-V (AND (MEM 1 (SAMPLE))
(MEM 2 (HAVE CONTAIN))))
(S.0BJ,COMP (MEM 1 (ELEMENT OXIDE ISOTOPE)))
(S.PP (MEM 2 (PHASE MINERAL)))
-2
(PRED (CONTAIN' (# 1 1)
(# 2 1)
(# 3 2)
(# 2 2 TERM)))))
(S:SAMPLE-KAVE#2 ((S.NP-V (AWD (MEM 1 (SAMPLE))
(MEM 2 (HAVE CONTALN)Y)))
(£.0BJ.COMP (MEM 1 (ELEMENT OXIDE ISOTOPE PHASE
MINERAL))Y)
->
(PEED (CONTAIN'

TERM)))))
(STSEARCH {(S.V (MEM 1 SEARCH))
(3.FPP (OF (2QU FOR)
(rQu IN)
(EQU ONY))

-2
(PRED (PRINTOUT (# 2 2 REFS?)))))
{S:SORT ({S.V {(EQU 1 SORT))
<. IMP T)
-
(PRED (SORTNEW))))
)
(LISEXPRINT (QUOTFE (V: TREEFRAG3)) 1)
(RPAOQ TREFFRAGS (ADJ NP NP,ADJ NP,ADJ#2 NP.ADJ-ADJ NP,ADJ-ADJ-ADJ
NP,ADJ-N NP _ADJ.COMP NP,ADJ,KP NP,ADJ.NPR NP,ADJ,N/N NP,ADVP NP, AND
NP.AND? NP,COMPL NP.DET NP,.DET,ART NP,DET,COMP NI ,DEZT,COMP-UNIT
NP,DET.INTFGFR NP,DET,MANY NP,DET,POSTART NP,N N ,NEG NP,NOM NP, NPR
NP.NR,NP NP,NR.S NP,OR NF,OR2 NP,PP NP,PP,ADJ-N NP,PP.,ADJ-NPR NP,PP.AND
NP.PP,AND.,FP NP,PP,.COMP NP,PP.,COMPL NP,PP,NPR NP ,PP,PP NP,PP,PP#U
NP.,PP.,PP,ADJ-NPR NP,PP,PP.COMP-UNIT NP.PP,PP.,PP NP,PP.,PP.PP+ADJ-NPR

.
’

<WEBBER>RULES ,WRITEZUP;7 SUN 11-JUN-72 12:29¢ri0 PAGE 1:40

NP.PRO NP.OREL NP,REL S.ADJ S.AND S,AND,NPR S,COMP S.,COMP-N S,COMPL
$.COMPL~-THAN S.COMPL.OBJ S,DCL s,DCL-S S,IMP S.1MP-S S,NEG S.NEG-S

s ,NP S.NP.COMP S,NPR S,NPC S.NPU S.NP-V S,08BJ S,08J,ADJ#2 S,0BJ,AND
$,08J.CO4P S,.ORJ,MPR S,0RJ,NPR7 S,0BJ,OR S,0BJ.PF S,0BJ,PP,PP
$,0BJ.PP,PP.PP S,0BJ.PP,PP,PP.PP S,0BJ,REL S.0R S,PP S,PP#1 S,PEF.AND
$S.PP,AND,PP S.PP,PP 5,0 S.0Q0-MODAL S,Q-NEG S.Q0-5 S,V 3,VP))

(DEFINEV

(ADJ.NP (ADJ ((NP NIL 1))))

(NP
(NP

(NP

(NP,
(NP,

(NP,

{NP
(NP

(NP,

(NP,

(NP

(NP,

(NP

(NP,

(
ADJLNPR (NP ((ADJ
JADJ N/N (NP ((ADJ |

1)

1))
LDET.LRT (NP ((DET ((=K
(NP, ((

LADJ (NP ({ADJ NIL 1))1))
(NP,

ADJ#?2 (NP ((ADJ NIL 2)})}))

.ADJ-ADJ (NP ((ADJ NIL)

(ADJ NIL 2))))

JADJ~ADJ-ADJ (NP ((ADJ NIL 1)

(ADJ NIL 2)
(aDJ NIL 3))))
LDJ-N (NP ((ADJ NIL
(¥ NIL 2
EDJ.CONP (NP ((ADJ

*)

)
COMPARATIVE))
1))

NIL 1
{W"PR NIL
(" (N |

A

))
{(
1)
ADJ,NP (NP ((ADJ ((NP

ADVP (MNP ((ADVP ((ARDV NIL 1)
(NP NIL 2))))))
AND (NP (AND (NP NIL 7})))

LAENDZ (NP (AND (NP NIL)

(NP NIL 2))1)
C C n
DET (NP ((DET NIL

(NU ¥TIL 2
T NIL 1Y))
GSTART ((COMP ((ADV KNIL 1)
(NP ((INTEGER NIL 2)))))
MANY))))

DET.C"MP (NP ((DET

(¥ NIL 3010
DET.C2MP-UNIT (NP ((NRET ((POSTART ((COMP ((ADV NIL 1)
(Nr ((INTEGER NIL 2)
{UNIT NIL 3)))))

MUCH))) 1))
(NP,DET.INTZGER (NP ((DET ((PUSTART ((Np ((INTEGER NIL 1)))
MANY)))))))
(NP NTEGER NIL 1)))

(NP
(NP,
(NP,

JDETANY (NP ((DET ((WP
FAN

DET.P.START (NP ((DE

((I
Y))
(MU NIL 2)) 1))
({(POSTART NIL 1})))))
N (9P (¥ NIL 1))))
VEG (NP (NEG (NP {(DEI KIL 2))
1B

7 <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29%N PAGE 1:41

(NP,NOM (NP (NOM (S NIL 1))}))
{(NP,NPR (NP ((NPR NIL 1))))
(NP,NR.NP (NP ((NR ((NP NIL 1
(NP _NR.S (NP ((NR ((S NIL)
(NP,OR (NP (OR (NP NIL 1))))
({NP,OR2 (NP (OR (Np NIL 1)
(NP NIL 2)1)))
(NP,PP (NP ((N NIL u4)
(PP ((PREP NIL)
(NP NIL 2))
3N
(NP,PP,ADJ-N (NP ((PP ((ADJ NIL 2)
(N NIL 1))))
(NP,PP.ADJ-NPR (NP ((PP ((NP ((ADJ NIL 1)
(EBR NIL 2))))))))
(NP.,PP.AKD (NP ((PP ((PREF NIL 1)
(NP (AND (NP NIL 2)
(NP NIL 3))))))
(NP.PP,AND.PP (NP ((PP (AND (PP {(PREP NIL 1)
(NP NIL 2)))

)1
1))

))

Y1)
(NP,PP.CNNMNE (NP
({PP
((PREP XIL 1)
(NP ((DET ((POSTART ((COMP ((ADV NIL 3)
(NP ((INTEGER N1L 4)
(UNIT NIL 5))3)))
6)
MUCH)))))
290
(NP,PE.COMPL (NP ((PP ((XP ((COMPL ((S NIL 1})))))))))
(NP.PP.NPE (NP ((PP ((PRFP NIL 1)
(NP ({NPR NIL 2))))))
(NP,PP,PP (NP ((PP ((¥WP ((PP ((PREP KIL 1)
(NP NIL 2)))
(NP,PP.PPRL (NP ((PP ((PREP KIL 3)
NP ((PP ((PREP NIL 1)
(NP NIL 2))))
'ORRRRE]
((NP ((PP ((NP ({(ADJ NIL 1)
(NPR NIL 2)))))))))))

)

)11)

(NP,PP.PE,ADJ-NPR (NP ((PP

(NP,PP.PP,CUMP=-UJIT (WP
((PP

((LET
((POSTART
{({COMP ((ADV NIL 1)

(NP ((INTEGER NIL 2)
(UNIT NIL 3)))))

NUCH))M M)

; <WEBBER>RULES,WRITEZUP;7 SUN 11-JUN-72 12:25¢N PAGE 1:42

(NP,PP.PP,PP (NP
{({PP ((NP ((PP ((WP ({PP ((PREP NIL 1)
(NP NIL 2)))3))))1))))))
(NP ,PP.PP,PP,ADJ-NPR (NP

((PP
((NP
((PP
((NP ((PP ((NP ((ADJ NIL 1)
(NPR NIL 2))))))1)1)1))))))
)
(NP,PRO (NP ((PRO NIL 1))))

(NP,OREL (NP ((S (9DRul)
IRRRD!
(NP,REL (NP ((S (REL)
IDRR R
(S<ADJ (S ((VP ((aDJ NIL 1))))))
(S.AND (S (AND (S NIL 1))))
(S.AND.NPR (S ((NP (AND (NP ((NPR NIL 1))))))))
(S.COMP (S
((VP ({XP ({DET ((POSTART ((COMP ((ADV NIL 1)
(NP ((INTEGER NI1IL 23)))))
MANY)}))Y)
{(S.COMP-N (5
((ve
({(NP ((DET ((POSTART ((COMP ((ADV NIL)
(NP ((INTEGER NIL 2))})))
MANY))))
(N KIL 3310y

(S.COMPL (S ((VP ((COMPL ((NP (NOM (S NIL 1))))))))))
(S.COMPL-THAN (S ((VP ((COMPL ((NP (THAN (S NIL 1))M))))))))
(S.COMPL,CHJ (S

{(ve

((COMPL ((NP (NOM (S ((VP ((NP NIL 1)1))))1)})))))))

{(S.DCL (S (nCcL)))
($.DCL-S (5 (DCL (S NIL 1))))
(S.IMP (S (INP)})

(S.IMP-S (S (IMP (S NIL 1))))
(S.NEG (S (NFEG)))

(S.NEG-S (S (NE3 (S NIL 1))))
(S NP (S {{(N¥P NIL 1))}))

(S NP,CORP (S ((8P ((DET ({(POSTART ((COMP ({(ADV NIL))
2)
MUCH)Y)))
)1
(S NPR (S ((X ((VPH NIL 1))y)))
{S.NPQ (S (P Q (NP NIL 1))))
(S<NEU (38 (8PU (NP NIL 1))))
(S NP=-V (S ((NP NIL 1)
(VB ((V NIL 2))))))

(S.0BJ (S {(YP ((NP ((NU NIL 2))
1))

.
I 4

(S.OBJ.ADJI#2 (S ((VP ((NP ((ADJ NIL 2))
(S.OBJ.AND (S ((VP ((NP (AND (NP NIL 1)

<WEBBEE>RULES ,WRITEUP;7 SUN 11-JUN-72 12:29.H PAGE 1:43

1))))
Y1)))
((COMP ((ADV NIL))

)
)
T

(S.0BJ.COMP (S ((VP ((NP ((DET ((POSTAR ({
2)
MUCH)))))
1))y
(S.OBJ.NPR (S ((VP ((NP ((NPEB NIL 1))))))))
(S.0BJ.NPR7 (S
((VP
((NP
{(NR ((S ((NP (OFR (NP ((NPR NIL 1)))
(NP NIL 2)
(NP NIL 3)
(NP ((NPR NIL 4)))
(NP NIL 5)

(NP ((NPR NIL 6)))
(NP ((NPR KIL 7)) 1))y

(S.O0BJ,OR (S ((VP ({NP (OR (NP NIL 1))))}))}))

(S.0BJ,PP (S ((VP ((NP ((PP ((PREP NIL

)
(S,0BJ.PP,PP (S ((VP ((NP ((PP ((NP ((P

)
(NP NIL 2)))))))1y)0
((PREP NIL 1)
(NP NIL 2))))))))))))))

1
)
P

(5.0BJ,PP,PP,PP (5

((VP
((NP
((PP
((NP ((PP ((NP ((PP ((PREP NIL 1)
(NP NIL 2))0))0)0m)))))
1))
(S.0BJ.PP,PP,PP,PP (S
((VP
((NP
((PP
((NP
({PF
((NP

)
(S.ORJ.REL (S ((VP ((NP ((S NIL 1))))

((NP ((PP ((PREP NIL 1)
(NP NIL 2)1))Y1)¥)))0)
IRRRRERRERRRE
))))

(S.O0R (S (OR (S NIL 1))))
(S.PP (S ((VP ((PP ((PREP NIL 1

(S.PP#1 (S

)
(NP NIL 2))y)31))y)

(VP ({PP ((NP NIL 1})))))}))
IL 1)

(
(S.PP.,AND {5 ((VP ((PP ((PREP N

(NP (AND (NP NIL 2)
(NP NIL 3)})))))1))

(S.PP.AND,PP (S ((VP ((PP (AND (PP ((PREP NIL 1)

(NP NIL 2)))0)0))y)0

; <WEBBER>RULES ,WRITEUP;7 SUN 11-JUN-72 12:29FHM PAGE 1:44

(S.PP.PP (S ((VP ((FP ((NP {((PP ((PREP NIL 1)
(NP NIL 2)))})}))yyyn)
(S.Q (5 (Q (NP NIL)
(VP NIL))))
(S.Q~-MODAL (S {(Q (AUX ((MODAL NIL})))))
(S.Q-NEG (S (Q NEG (NP NIL)
(VP NIL))))
(S.Q-5S (S (@ (S KNIL 1M
(S.V (S ((VP ((V NIL 1))))))
{(S.VP (S ((VP NIL)Y)))
)
(LISPXPRINT (QUOTE (V: HULELISTS)) T)
(RPAQQ RULFLISTS (TOPICRULES FRURULES DRULES SETRUL 3SETRUL? NPRRULE
TEFMRULE HFEADRULES DALL SSETRUL OWORDS SEM-NOUNS SEM-VERBS AVERAGEFLAG))
(DEFINEV
(TOPICRULES (TOPICN\LNOT-NP TOPICA\NOT-35 TOPICNAUTHCE NIL
(OR TOPICNTERM TOPICNTERMZ TOPIC\ESP
TOPIC\EMPHASIS TUPIC\NR.S TCPLC\NR.NP
(AND TOPICNOR-S TO:LC\AND-S TUPIC\OR-NP
TOPIC\AND-NP TOPIC\ADJ,NP
TOPIC\NP,CCMPL TOPIC\S,COMPL
TOPIC\PP TOEFICNAUTHOR2
TOPIC\PP,COMPL TOPIC\REL
(OR TOPIC\ADJ,COMP
(AND TOPICN\ADJ (OK
TOPIC\ADJ,SUPER
TOPLC\N)
TCPLCA\NPR)
TOPICNALJ-N TOPICNADJ-NPR)
TOPIC\NOM TCPICNNR.S TUPIC\NR,NP
TOPICN\S.NP TUO.IC\V-INTRAWNS
TOPIC\Y-TRAKS TOPIC\V-TRANS2
TOPIC\S.OBJ TCPIC\S.PP}}))
(PRERFULES [S:AND S:0R S$:DCL SIIMF S:WHQ SIQREL-NEG NIL S:QREL S:YES/NO
NTL PR1 NIL PR2 NIL PR3 NIL PR4 NIL PR5 NIL S:NPU
S:NPQ NIL PRO))
(DRULES (N:Hi'MBER NIL D:¥AS5> NIL NP:NPR DiSOME DINIL D:HOWMANY
D:ATLEAST D:EXACTLY D:MORETHAN D:LESSTHAN DIATMQOST
D:¥VERY D:ALL-PL D:NEG D:THE-SG D:WHQ-SG D:WwHQ-PL
DtFEACH D:ORUINAL D:CARUINAL D:ANAPHORA D:SEMI-ANAPHOR
D*ALL\ONES D:THE-S5G2))
{SETRUL (D:SFTOF NIL D:NQT-S5S7T))
(SETRUL? (n:SET1 BIL D:NOT-SEIL))
(NPRRULT {NP:NPRY)
(TERMRULE (ANY:TLRM))

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-74 12:292N PAGE 1:45

(HEADRULES (((S (NPU))

(QUOTE NPU))

((S (¥PQ))

(QUOTE NPQ))

((S (AND))

(QUOTE AND))

((S (CR))

(DUOTE OR))

({5 (Q (S NIL)))
(QUOTE 0})

{((S (Q (VP NIL %)))
(HEAD 1))

((S (DCL (S NIL)))
(QUOTE DCL))

((S (DCL (VP NIL 1)))
(HEAD 1))

((S (IMP (S NIL)))
(QUOTE IMP))

((5 (NEG (S HIL)))
{OUOTE NEG))

((S (NEG (VP NIL 1))
{HEAD 1))

((S ((VP NIL 1)))
(HEARD 1))

((VP ((VP NIL)))
{HEAD 1))

((VP ((V NIL 1)))
(TE&M 1))

((NP ((NPR NIL)))
{TERM 1))

({NPR NIL 1)

(TERM 1))

((NP ({(N NIL 1))
(TEREM 1))

((N ¥NIL 1)

(TERM 1))

((NP (OR))

(QUOTE 9R))

{ (NP (AND))

(QUOTE AND))

({(ADJ NIL 1)

(TERM 1))

({PREP NIL 1)

(TERM 1))

({(NP (NOM (S NIL M)))
(HEAD 1))

({V NIL 1)

(TERM 1))

((NP ((PRO NIL)))
(TERM 1))

<WEBBER>RULES ,WRITEUP,;? SUN 11-JUN-72 12:29PN PRGE 1:46

~s

((INTEGER NIL)

(TERM 1))

((UNTT NIL 1)

(TERM 1))

(PRO NIL 1)

({TERM 1))

(NP (NEG))

(QUOTE NEG))))

{DALL (D:2LL))

{SSETRUL (D:SSET NIL D:NOT-SET))

(QWORDS (HOWMANY WHICH{) WHEN WHERE WHY HOW WHQ))

(SEM-NOUNS (AGE ANALYSIS AVERAGE BIG CONCENTRATION DOCUMENT DUST LITTLE
0LD))

(SEM-VER®S (CONCERN CONTiIN DISCOVER GIVE LIKE FERTAIN REFER))

{AVERAGEFLAG NIL)

)

STOP

(
(

APPENDIX D: DOCUMENTATION OF FUNCTIONS

This appendix is designed ¢to give a detailed
description of the complete set of functions involved in
the parser, interpreter, and grammar of the system, It
describes each function, Places it the overall framework
of the system, explains how At Jnteracts with other
functions, and describes the functions of various
arguments and temporary storage locations, Together with
the 1listings of the programs, grammar, and semantic
rules, it provides a thorougn documentation of the LSNLIS
system,

Each function 15 given with the names of 1its
arguments in ¢the form of a typical call to the function
(e.9., (GETR REG WHERE) is a call to tnhe function GETR
vith arguments REG and WHERE, Those functions which take
an indefinite number of arguments bound as a 1list to a
single atom are listed a8 a dotted pair of the function
and the argument list (e,g. (BUILD , ARGS) represents a
call to the function BUILD with the CDR of the calling
form bound to ARGS),

Page 2

I, EXECUTIVE AND PARSING FUNCTIONS
(ABORT)

ABORT is a function for terminating fruitless paths
in a vparsing, It 1is used as an action on arcs of the
grammar (usually embhedded in a COND) to abort the arc if
some condition is not satisfiegd,

(ACT ACTIONS NONTERMFLAG)

ACT is the function called by STEP to eXxecute the
actions on the arcs of the grammar, ACTIONS is the list
of actions to be performed, and normally it is terminated
by a terminating action (JuUMP, 70, or ABORT), However,
there are cases {e,9. on a JUMP arc) when ACT is called
with a 1list of actions ¥hich §s not So termimated, 1In
this ecase, the argument NONTERMFLAG is set to permit a
normal returnm from ACT, If NONTERMFLAG is not set and a
nonterminated list of actions is encountered, then there
is a bug in the grammar and ACT pr:ints an error message,

Terminating actions are 4{indicated by returning a
value «LO, 11, L2, »END, «HELP, indicating a location
in the STEP routine to Wwhich control 1is to resume,
Terminal acts other than ABORT also have the
responsiblity of setting up the configuration on Wwhich
STEP is to operate,

(ADDL REG EXPRESSION)

ADDL is a function for use on arcs of the grammar
for adding to the contents of a register, It adds the
results of evaluating EXPRESSION to the leff of the
contents of the register REG (which must be a list),

(ADDLEX STRINGPOS LEXPAIR)

ADDLEX is a function to add lexical information to a
table LEXTABLX which keeps a record of the results of
calls to LEXIC, STRINGPOS is a pointer into the input
string where the current word hegins, and LEXPAIR is a
pair consisting of the word found and a pointer into the
input string immediately following the word, 1In the
current system these string pointers are merely the LISP
pointers into the 1list of words which make up the
sentence and the dotted palr consisting of ¢he word and
the rest of the sSentence is the Same pointer as the
pointer to the beginning of the word, However, the
function ADDLEX was written to permit more flexible use
of STRINGPOS,

Page 3

(ADDR REG EXPRESSION)

ADDR is like ADDL except that jt adds information to
the right end of the 1list in register REG,

(ADJVERB)

ADJVERB tests whether the verb was produced from a
predicate adjective replacing a copula verb, 1In this
case, the verb has the form (Vv ADJ ~---), and ADJVERB
tests for the presence of ADJ,

(ALT,STACK ALT)

This function extractsS the stack from an alternative
ALT, It is wused in several places by other functions.
It is one of a large class of such functions which have
been named ¢to aid the readibility of the programs, All
functions corntaining a period 4in tneir names in this
fashion are functions for extracting information from a
list that is functioning as a spec:al "data type", The
portion of the name before the period names the data type
to which the function applies, and the portion of the
name which follows the period names the "field" of the
data tyYpe VWhose value 1S heing extracted, Thus an
expression of the form (ALT,STACK X) embedded in a piece
of code tells the reader both that X i{s an ALT (the data
type for alternatives in the grammar) and that the value
0of the expression will be the stack which was saved in
that alternative,

(ALT,STATE ALT)

This function is similar to ALT.STACK, but eXxtracts
the state of the alternative,

(ALT,STRING ALT)

This function extracts the string from an
alternative,

(ALT .WEIGHT ALT)

Extracts the weight aSsoclated with an alternative,
(The Weight of an alternative 1Is a measure of how
"likely" the alternative is,)

({ALTARC,ACONFIG ALT)

ALTARC.ACONFIG is a function for extracting the
ACONFIG assoeciated with an ALTRRC alternative from the
entry for that alternative,

Page 4

(ALTARC,ARCS ALT)

This function extracts the list of arcs from an
ALTARC alternative,

(ALTARC,TRAIL ALT)

This function extracts8 a peinter to the TRAIL entry
from an ALTARC alternative ALT,

(ALTARCGEN)

This funection is called in a number of places in the
STEP function to store ALTARC alternatives, If there are
arcs which are as yet untried (and if LEXMODE is not set)
then an alternative 1is stored which will enaple those
arcs to be ried later Iif <¢he <current path 1is not
successful, (LEXMODE 1s set during the processing of
certain parts of reduced conjunctions, when the parser is
constrained to follovw the trail 1left by a previous
parsing of the same string, and ALTARC alternatives are
not generated,)

(ALTCONJGEN PPATH)

ALTCONJGEN generates ALTCONJ alternatives for
restarting a vprevious configuration of the parse on the
string which follows a conjunetion (it is called by
SYSCONJ as part of the system facility for handling
reduced conjunctions), PPATH is the partial path entry
from some previous configuration which saves the
neceSsary jinformation for restarting,

(ALTLOC ALTS STATE STACK)

ALTLOC is a function which locates alternatives for
the sSelective modifier placement facility, It looks for
the alternative which is in a specified state and has a
specified stack pointer.

(ARCPICK LOCX LOCY)

ARCPICK is a function used bY the Selective modifier
placement facility to select a particular arc out of a
list of arcs and replace it by an equivalent arc which
can only be followed if a flag »SPOP is not on, This
enables the selective modifier placement facility to take
a varticular arc out of a list of arcs and replace it
with an equivalent arc that can only be taken i1if in the
context of another SPOP,

(ASSIST)

Page 5

ASSIST is a function called by PARSER when no
parsings have been found and no more alternatives remain
to be tried, When the flag ASSISTFLAG is not set, it has
no effect. Otherwise, it locates the blocked
confiquration which got the farthest into the input
string before blocking, and executes a call to HELPER to
allow the user to investigate, (It 1identifies itself
with the typed message "ASSISTANCE:"), This function is
used only for system debugging, and ASSISTFLAG would
normally be off for users, If the call to HELPER is
terminated with RPT instead of 0K, ASSIST will attempt to
resume the parsing from that point.

(BACKUP)

This function is designed for use in an ASSIST break
(i,e. a call to HELPER from ASSIST). It allows the user
to back up the configuration aleng tne path leading to
i<, Thus the user can back up along the computation of
the blocked configuration (and by terminating the call to
HELPER with RPT he can restart the computation from the
configuration to which he has backed up), Each «call to
BACKUP backs up the configuration one sStep and prints out
the state of the configuration after the backup,

(BUILD . ARGS)

BUILD is a function which can be used on the arcs ot
the grammar to build sentence structure, It takes an
indefinite numher of arguments, the first of which is the
name of a structure fragment, The remaining arguments of
BUILD (if any) are items to be substituted for specially
marked leaves in the structure fragment, The structure
fragment is processed from left to right, and when a node
+ 1is encountered the next item in tne remaining argument
list is taken as the name of a regi1Ster wWhose value is to
be inserted for the sSymbol +, When a node # \is
encountered, the next item is taken as a form to be
evaluated, and the resulting value is substituted for the
symbol #, In additjion, when the symbol * is encountered,
the current value bheing scanned bY the pointer = is
copied into the structure, and where Subexpressions ot
the form (® X1 X2,.%¥n) are encountered, a Single list is
geherated which is the result of appending X1, X2, e
¥n (which must he lists) into a single list, BUILD1 and
BUILD? are the functions that do most of the work,

(BUILD1 X)
See BUILD,

(BUILD2 X)

Page 6

See BUILD,
(BUILDQ . ARGS)

BUILDQ is 1ike BUILD except that its first argument
is taken literally as the structure fragment while
BUILD's first argument is evaluated,

(CAT CATEGORY)

CAT is a function for use in conditions on arcs in
the grammar for testing the syntactic categories of the
current word being scanned, CATEGORY can be either a
gsingle syntactic categorY name or a list of category
names, CAT is true if the current word can bhe in the
indicated category or one of the indicated categories,

(CATCHECK CATEGORY FLAG)

CATCHECK is the function used by CAT and by STEP for
accessing the dictionary to determine whether the current
word can be a memher of a particular category, It
returns a list (called a form-features 1ist) whose first
member is the standard (uninflected or "root") form of
the word as used in this category and whose remaining
elements are inflectional features associated with this
word used as this category, In addition, if there are
other sSuch lists (corresponding to different senses of
the word) for the same Syntactic category and the flag
FLAG is set, then an ALTCAT alternative is genherated to
enable that alternative to be pursued later, This flag
is set when STEP calls CATCHECK for a CAT arc, but is not
set for other uses,

(CCHECK TEMPLATE MLIST)

CCHECK is ¢the function which checks semantic
conditions in templates during the matching of semantic
rules by the interpreter. TEIMPLATE is the template in
question, and MLIST is a LIST of possible matches for the
template which are ¢c be screened by CCHECK, Each
element of MLIST is an ALIST whoSe elements are dotted
pairs of node numbers in the template and their
corresponding matches in the tree,

(CHANGEWORD , ARGS)

CHANGEWORD is a function for use 1n a REQUESTDEF
break when the system encounters an unknowwn werd, It
takes an indefinite number of arguments ARGS, and it
patches this 1ist into the {nput string in place of the
current word, If ARGS is NIL, then the current word is
deleted, It performs the necessaryY side effects to
enable the parsing to continue as if the resulting string

Page 7

vere the one originally typed,
(CHECKF CATEGORY FEAT)

CHECKF is a function which checks the current word
(#*) to see {f it has feature FEAT under syntactic
category CATEGORY in the dictionary., FEAT may be a 1list
of features instead of a single feature, in which case
CHECKF is true if = has anY of the indicated features,
The dictionary checking is actually performed by CHECKF1,

{CHECKF 1 CATEGORY FEAT)
See CHECKPF,
(CHOOSEALT N)

CHOOSEALT is a function for debugging grammars which
enables the user to specify the alternative which will be
tried next when the user t¥Ypes GO(PARSE) to TALKER. The
number N refers to the number which 1s printed out with
the alternative when running with TRACEFLAG set to T,

(COMPARATIVE ARGS)

COMPARATIVE tests whether the verb was produced from
a comparative predicate adjective (e,g, JOHN WAS
BIGGER,,,) replacing a copula verb, In this case, the
verb has the form (V ADJ ,.. COMPARATIVE), and
COMPARATIVE tests for the presence of the word
COMPARATIVE,

(COMPFORM ENDING)

COMPFORM is a function to check whether the given
ending is the indicated enhding form the comparative form
of the adjective », Ir is used in MORPHTABLE for the
morphological analysis of comparative adJjectives,

(CONJOIN)

This function is one Oof three primary functions in
the SYSCONJ facilicty. {The functions are CONJOIN,
POPCONJ, and SYSCONJ.) It is never called explicitly from
any part of the code, but a call to CONJOIN is placed on
the stack by SYSCONJ along with the current status of the
configuration which 1is Dbeing suspended 1in order to
restart an earlier <configuration on the string which
follows the conijunction, When the restarted
configuration has completed the construction which it was
building, control will pop to th.s special stack entry,
and the function CONJOIN will be executed to Tresume the
suspended configuration on some tail of the string

Page 8

consumed by the restarted configuration, CONJOIN
enumerates all possSible such tails, and generates
alternatives for each of them, It also gathers up
multiple <conjuncts into a single level conjunction (i,e.
(AND A B C) instead of (AND A (AND B C))--this is done by
the first COND in the program) and it uses a heuristic
Strategy for selecting the "preferred” tail to try first,
The strategy is that 1if +he word which immediately
preceded the conjunction word (i,e, (CAR (PATH.,STRING
(CAAR TEMP)))) is repeated somevhere in the string
consumed bY ¢the restarted coenfiguration, then the
preferred place to resume the suspended alternative is
immediately after this word, The 1location of such an
alternative is performed bY the loop at L1,

(CONJSCOPE SCOPEWORD CONJ)

This function s a predicate which i5 true of a
conjunction and its left-hand scepe indicator, That is,
CONJSCOPE is ¢rue when SCOPEWQRD is "both" and CONJ 1is
"and" or when SCOPEWORD is "either" and CONJ is %“er", It
is used in CONJSTARTS for Selecting preferred restart
configqurations,

(CONJSTARTS PPATH STATES)

This function computes restart configurations for
SYSCONJ, It returns a 1list of the possSible restart
configurations ordered with the most likely one last, so
that vhen they are placed on the ALTS 1list {in the order
given, the most likely onhe will be the most recent ALT,
CONJSTRARTS coperates by backing up the partjial path
(PPATH) leading to the configuration vhere the
conjunction was encountered and picking up possible
restart configurations, It is €forced to back uUp across
at least one word in the string, and the flag FIRSTFLAG
is used to remember whether this conditon has been met,
It backs up along the partial path at each level until it
is exhausted and then goes up the sStack one level and
starts Dbacking across that 1level, It 4is forbidden,
however, from backing up the stack beYond a previous
SYSCONJ entry, When such a condition is encounttered, or
if the stack is emptied, then QUITFLAG is set to indicate
that all possible configurations have been found, It
will not generate a restart configuration WwWhich was
reached as a result of a JUMP arc, since that would
duplicate a configuration which <can be reached by
restarting the configuration at the beginning of that
JUMP arc, Also, if CONJSTARTS is given a list of states
as its second argument STATES, then only restart
confiqurations in those states will Dbe considered:
otherwise, any state iS poSsible,

Page 9

CONJSTARTS uses several heuristics to locate
preferred restart configurations, In the course ot
operation it selects up to three prefarred alternatives
(PREFERRED®,PREFERRED1 and PREFERRED2, favored in that
order). PREFERREDO is that alternative, if any, which is
indicated by a scopeword for the current conjunction
("both" for "and" or "either" for "or"), PREFERRED1 is
the alternative that 1is indicated by a repeated word--
i,e. when the word which immedjately follows the
conjunction occurs in the preceding string, PREFERRED?2
is the alternativee which is the beginning of the current
constituent being built,

{CONSTITUENTS NODE)

CONSTITUENTS is the function which when applied to a
node of a parse tree Yields a 1ist of the immediate
constituents (daughters) of <¢hat node, For the tree
notation currently in use, this is simply the CDR of the
node, :

({CONTRACTP WORD)

CONTRACTP is a function for morphological analysis
of words which appear to be contract numbers, It is only
a crude aoproximation to an actual recognizer of contract
numbers, It 18 only called for wvwords which are not
already in the dictionary, and hence will not <cause any
conflicts with words which are entered in the dictionary
that might meet its conditions but not be contract
numbers, The conditions are that the word contains at
least one hyphen, one numerical digit, one alphabetic
letter, and no other punctuUuation marks,

(CTYPE ENDING)

CTYPE is a predicate used in MORPHTABLE entries for

determining whether the coojugation fype of the current
word is the same as that given as the argument ENDING,

(DDEF . ARGS)

DDEF is a function for adding entries to the
dictionary. It is not called explicitly by any
functions, but is intended for use by a user oOr systems
programmer at the eXxecutive level or in a break. ARGS
should be a list whose first element is the word to be
defined, and whose Tremaining elements 1in pairs are
property names and propertY values to be added to the
dictionary entry for the word, It also adds the word to
the global list DICTIONARY.

Page 19

(DETBUILD)

DETBUILD is a function which is called by arcs of
the grammar t¢e build the determiner Structure of a noun
phrase, It combines the contents of the registers
POSTART and DET with the appropriate structure,

(DETOUR)

DETOUR is the function whicn <chooses the next
alternative to be tried when the parser encounters a dead
end or 1s instructed to find another ©parsing, Tt
searches for the mosSt recent alternative with the lowest
weight,

(DICT? WORD)

DICT? is a function for examing the dictionary entry
for a word WORD., It is nhot called by any function, but
is intended for use by a uSer or sSYstems programmer,

(DICTCHECK LEX CATEGORY)

This funetion checks the dictionary entry for the
word LEX to see if it can be analyzed as a member of the
syntactic category CATEGORY, Tt returns a 1list each
member of which is a list consisting of a standard (root)
form of the word and the inflectional features associated
with that word as an inflected form of the indicated
root, This is the function which decodes the various
types of abbreviated dictionary fermats into the standard
list of form-features lists,

(DICTFETCH WORD)

DICTFETCH {is a functien which retrieves the
dictionary entry for a word from the external dictionary
file. The name of the external file is8 assumed to be on
a global variable DICTFILE, DICTFETCH doces a binary
search on the file for the 1indicated word after first
checking to verify that it has not already tried to f£ind
this word on the file before, In addition to calling in
the dictionary entry for the word, it also calls itself
recursively to obtain the wentries for certain related
words (see RELATEDWORDS),

(EQU N , ARGS)

FQU is a predicate used in the conditions 4in
semantic rules, Tt verifies that the terminal string
dominated bY the node numbhered N is equal to the string
ARGS,

Page 11

({EVALLOC FORM)

EVALLOC is a function wnich is used by several of
the functions which are used by the grammar, FORM is an
argument list for some function, and EVALLOC decides
wvhether the arqument is the name of a register (in which
case it applies GETR to get the contents of a register)
or a form for EVAL in which case it calls EVAL, It also
handles the evaluation of the special current constituent
pointer «, and £ills the <current constituent in as a
default for certain cases Where an argument is missing.

(F,NODE FRAGMENT)

F.NODE is a function Used in the tree match facility
to obtain the node name of a node in a partial tree
fragment of a template,

(F,REF FRAGMENT)

F.REF is a function to0 access the reference number
if any associated with a nNode in a partial tree fragment
of a template,

(F.SONS FRAGMENT)

F,S50NS is a function for accessing the 1list of
constituents of a node in a partial tree fragment,

(FILEMATCH WORD FILE POS)

FILEMATCH is a function used by DICTFETCH to compare
a given word with the word at the specified position POS
on the external FILE, It returns one of the atoms
GREATER, LESS, or EQUAL.

(FRONTED? SONS)

FRONTED? is used when the parser is doing
simultaneous interpretation, It runs tnrough the SONS of
a node, looking for prepositional phrases Wwhich were
preposed in surface struUucture, and TretuUrns a list of
those that were, This 11ist 4is used bY SORTREFS in
deciding quantifier ordering, since quantifiers in
fronted prepositional phrases retain their surface
structure scope,

(GETF FEATURE)

GETF is a function which obtains the value of a
feature FEATURE for the cuUrrent word on a CAT arc, AS a
side effect of the call to CATCHECK on a CAT arc, the
atom FEATURES 1is bound to <the 1list of inflectional

D.11

Page 12

features associated with tnhe current inflected word,
GETF accesses features from this list,

(GETLEX STRINGPQOS)

GETLEX is a function for accessing the LEXTABLE
constructed by LEXIC,

(GETR REG WHERE)

GETR is a function for getting the contents of a
register REG, puring the parsing, tne contents of the
registers are kept on a list REGS of alternating register
names and register valueS, GETR Searches this list for
the register REG, However, there are times wvhen one
wants to dget the contents of a register at some higher
level on the stack, The argument WHERE allows for the
specification of the stack locatien, If WHERE is T, then
the top level is used, If it 4is *“NEAREST" ¢then GETR
searches the current leve) and then successively looks up
the stack until it finds ah instance of REG, If WHERE is
a number, then GETR Jooks at tnat numerical stack
position, Otherwise WHERE can be a condition on the
STATE, REGS, and ACTIONS of a Stack entry which
determines the level of the stack to use,

(GETROOT WORD CATEGORY)

GETROOT i8 a function for obtaining the root form of
the word WORD viewed as a member of category CATEGORY.
Note: if there are several possible roots, only the first
one in the dictionary is found, e,9. (GETROOT (QUOTE
SAW) V) will return SAW or SE? depending on vwhich 1is
first in the dictionary entry under the category v,

(HOLD FORM FEATURES)

HOLD is a function for use on arcs of the grammar
which adds items which have been found in the sentence in
gsome position other than their legitimate deep structure
position to a special HOLrD list, Entries on the HOLD
list may later be recognized by VIR arcs in <the grammar
as if they had been found at the polnt in the sentence
vhere the VIR arc is applied, The values of FORM and
FEATURES are saved on the list so that when the VIR arc
is applied, * will be bound to FORM and FEATURES will be
bound to the saved value of FEATURES,

(HOLDSCAN HLIST CATEGORY TST)
This function scans the 1list HLIST (vhich will be

the HOLD 1list) for elements of the type CATEGORY which
meet the condition 7ST., It is used for prcessing VIR

Page 13

arcs in the function STEP,
(HYPHENADJ WORD)

HYPENADJ is a predicate which is true of words which
look like hyphenated adjectives, It 1is a crude
approximation of a function to recognize hyphenated
strinags of English words, HYPHENADJI 1S true if WORD
contains at least one hyphen, at least one alphabetic
character, no numeric digits, and no other punctuation
marks, It is wused in the morphological analysis of
adjectives,

(JUMP S)

JUMP is a function whicn can be used on arcs of the
grammar to indicate transition to a new state without
advancing the input string, It does this by setting up
the new configuration CONFIG and returning =L1 to
indicate that the function STEP i8 to continue at
location L1,

(LEXALIZE STRING)

LEXALIZE is a function which obtains the 1list of
(lex . stringpos) pairs which can be obtained from a
given string by the compreSsion of compound expressions
into single lex's and by lexical substitutions,

(LEXIC ALTS)

LEXIC is the function whose job {isS to determine the
next word in the input string, It is called by PARSER
wvhenever the input string 1is to be moved, LEXIC provides
for the -expansion of contractions, tne substitution ot
some sYnonyms, the compaction of compound phrases which
are to bhe treated as single words, and the requesting
from the user of definitions for unknown words,

The next word in the Sentence is not always uniquely
determined, and for this reason, LEXIC is designed to
enumerate the alternative possible "next words", It does
this as follows: When LEXIC is called, 1t choOses one ot
the possible next words and sets up the value LEX to hold
it (and adjusts STRING accordingly so that LEX is (CAR
STRING), If there are other possible "next words", then
LEXIC Ggenerates alternatives (ALTCOMP's or ALTSUB'S) for
these and returns a list of them as its value, If ¢there
is only one possihle choice for LEX, then LEXIC returns
NIL., The portion of PARSER which calls LEXIC takes any
alternatives returned by LEXIC and generates an ALTLEX
alternative on the parser's ALTS list, In restarting one
0of these ALTLEX's PARSER will call LEXIC with a list ot

Page 14

alternatives ALTS, and LEXXIC vill generate the
appropriate choice for another "next word"™, Thus the
first COND in LEXIC tests for whether LEXIC has been
called in this mode to enuMerate another alternative, and
if so branches to location ALT,

Normally, dictionary entrjes are stored on the
property lisets of atoms which are provided by the LISP
system. Hovwever, numberS and the special atom NIL are
not permitted to have Property 1ists in LISP nor can
pieces of 1ist structure have property 1lists, However,
we would like to be able to recognize such constructions
vhen they occur in input sentences, and therefore LEXIC
tests for these sprecial types of LEX, If the input
"word" is one of these types, then the functions of the
morphological analyzer which are stored on MORPHTESTS can
recognize them, and LEXIC will consider them known
possible next words, In addition, for pieces of list
structure, LEXIC will consider the possibility that the
parentheses in the input vere superfluous and will
generate an ALTCOMP alternative in which the parentheses
have been removed, This alternative will not be tried,
however, unless there 1S no other way to parse the
sentence,

If the input word is not one of the special forms
discussed above, then LEXIC checks to see if the word has
a dictionary entry (PLIST determines whether the property
1ist is empty) and, 1f not, whether the vword can be
derived by regular inflection €frem a known word (the
function MORPH performs this type 0f morphological
analysis), If the word turns out to be known for any of
these reasons, then the routine brancheS to location
SUBSTITUTE? to consider possible substitutions or
compound phrases,

Tf the "word" is not Known, one possible reason is
that it «contains some Punctuation marks that were not
separated from it by a space or that it has been run
together with another word with onlY punctuation marks
separating them, The next thing which LEXIC does {is to
look for such punctuation by unpacking the characters of
the word and processing them to look for punctuation,

Wwhen a word is known to the system by virtue of
having a dictionary wentry, then LEXIC 1looks to See
whether the dictionary specifies a substitution to be
performed, If so, it will find on the property list of
L®X the property SUBSTITUTE followed bY a 1list of
alternative substitutions. Fach substitution is a list
(possibly NULL) of words to be inserted 1in place of the
current word in the input string, If there isS more than
one substitution, then the first one 1s taken and an

Page 15

ALTSUB alternative is generated for the rest, Following
the testing for substitutions, LEXIC <checks for the
presence in the dictionary of a COMPOUNDS entry which
indicates that LEX can begin a compound phrase, The
value of the property COMPOUNDS is a search tree for the
possible compounds that cah begin witn LEX, and LEXIC
compares this ¢tree with the sequence of words following
LEX in the input string, If 41t finds a match, it chooses
the 1longest one and generates ALTCOMP alternatives for
any shorter ones,

{LEXPAIRS STRINGPOS)

LEXPAIRS is the function called by LEXIC to produce
the 1list of {lex , stringpos) prairs which can be found
at the indicated position STRINGPOS. Each pair indicates
a possible lex together with the stringpos which
immediately follows it.

(LIFTR REG FORM WHERE)

LIFTR is a functjon for setting register contents at
higher 1levels on the stack, REG 1s the name of the
register, FORM is the value to which it 1s to be set, and
WHERE is a specification of the level on the stack at
which the register is to be set, WHERE permits the same
options for LIFTR that it does for GETR with the
esception of "NEAREST",

(LONGBLOCK)

LONGBLOCK is a function which i1s cailed by ASSIST to
determine the blocked configuration which got the
farthest through the i1nput string when a sSentence 1is
unparsable, This is a likely site for the error which
caused the sentence not to parse, especially if the error
has to do with the dictionary entry for a word,

(MARKER ¥ Y)

MARKER is a function which checks whether the word X
has the semantic marker Y,

(MEMBSTACK PTR STACK)

MEMBSTACK is a function used by PARSER as part of
the well-formed substring facil:ty to test whether a
given alternative could posSsibly add to a given position
in the string, ©STACK is the stack of an alternatjve from
the BLTS 1list and PTR 1is a vointer to a list of
well-formed substrinas, MEMBSTACK returns T if STACK
contains the pointer in itS WFST3 entry at some level,

Page 16

(MODAL)

MODAL is a predicate for use on the arcs of the
grammar and is true if the current value of » is a modal
verb,

(MODESET MODE)

MODESET is a function for initlalizing Some standard
mode settings, MODE T cauSes all parsings to be obtained
and interpreted and executed, MODE 1 does parsing only,
MODE 2 does parsing and semantic interpretation, and MODE
3 does parsing, semantic interpretation, and execution,

(MORPH LEX CATEGORY CMODE)

MORPH i1s the function which performs morphological
analysis for rugularly inflected words, LEX is the word
being MORPH'ed, If CATEGORY {s a single category name,
then the analysis is performed for that category only;
but if CATEGORY is NIL, then the analysis 1is performed
for all possible <categoreis, MORPH makes use of two
tables -- MORPHTESTS and MORPHTABLE, The first contains
arbitrary LISP tests for particular types of words, while
the second contains inflectional endings,

MORPHTESTS is used both in MORPH and in CATCHECK; it
consists of a 1list of entries for different syntactic
categories, with each entrY consisting of the name of the
category and a series of two~element lists which specify
a Predicate to be tested and a form to be returned as the
form-fetures list if the predicate if true, A simple
MORPHTESTS entry would be (INTEGER ((NUMBERP =) (LIST
«))), indicating that any vrd * which passes the test
(NUMBER #) will be <considered as an 1instance of the
syntactic category INTEGER, with a standard (root) form
identical to itself (%) and witn no inflectional
features, CMODE is a flag which can be set to skip the
MORPHTESTS analysis.

MORPHTABLE 1indlcates the possible inflectional
endings for regularly inflected words, and the procedures
for obtaining the unmderlying root forms for 4inflected
wrds, MORPHTABLE also Contains entries for several
different syntactic categories, Efach entry specifies a
syntactic category and then a sequence ©f entries of the
form:

(E- E+ CATEGORY CONDITIQON FEATURESw»)

where E- is an ending to remove from the end of the word
(if it is not there, then the rule doesn't apply), E+ is
an ending to add to the stem that results from

Page 17

subtracting E-, CATEGORY is the syntactic category of the
root which is to be checked, CONDITION is a condition
whch must be true of the root when viewed as category
CATEGORY; and FEATURES (there may be any number of them)
are the 1inflectional features whichare to be agsociated
with the work 1f ¢the condition is satisfied, The
CONDITION in the rules is wused ¢o0 verify that the
tentative root is indeed in the <class of wrds which
undergo the regular inflection represented by the rule,
For example, the entry (N ((S) NIL N (PLURAL -S) (NUMBER
PL))) says that if we re looking for a noun (N) and if
the wrd ends in S, then we remove the § from the end, add
nothing (NIL) and look at the resulting wrd as a noun (N)
to test the condition (PLURAL -S) (Wwhich tests the
dictionary entry for the word for the property N with
value ~-S) to see if the VWord undergoes this type of
inflection, If so, then the inflectonal features
associated wieh the word consist of the single feature
(NUMBER PL).

If a dictionary entry is computed £for a word by
means of morphological analysis, then it is added to the
property list for that word for ¢tne duration of the
console session with the system, Thus, the morphological
analysis described will be done only once fer each word
for which it is required.

{MORPHTABCHECK TABLE)

MORPHTABCHECK is the function which tests the
entries in ¢he MORPHTABLE for MORPH, It returns a list
of appropriate form-.features 1lists for the dictionary
entry if a 1line of the ¢able 1is successful and NIL
otherwvise,

(MORPHTSTCHECK TAB)

MORPHTSTCHECK is the function wnicin checks entries
in the MORPHTESTS table for MORPH, It also returns a
list of form-feature lists,

(NEGADV WCRD)
NEGADY {8 a function which tests tfor negative
adverbs such as "hardly", etc, wnich cause subject/verb
inversion when the begin a sentence,

(NEXTWRD WRDS)

NEXTWRD is a function wnhnich is used on arcs of the
grammar and returns the nexXxt word in the input string.

Page 18

(NPBUILD)

NPBUILD is the functiom which builds the syntactic
tree structure for a noun Phrase, It 1s used on POP arcs
in the grammar,

(NPCHECK NODE TERMINALS)

NPCHECK is a function used in PNCHECK for testing
constituents of a noun phrase node, It uses the free
variahle NP which is bound to a noun phrase node by
PHCHECK and looks for a constituent of the noun phrase of
type NODE, It checks whether the immediate constituent
of this NODE is a memher of the list TERMINRALS,

(NPREP ARGS)

NPREP tests whether a given preposition 1s usually
associated with the head noun of a noun phrase, ARGS may
be a preposition or a prepositienal phrase, in which case
its preposition is extracted and tested, This is a
primitive foray into correct modifier placement, but it
works in more cases than not,

{NULLR REG)

NULLR is a predicate for use in conditions in the
arcs of the grammar for testing whether the register REG
is empty,

(ORFLAG X)

ORFLAG is a function which can set a special mode
that tells the system to interpret all "and"” conjunctions
as if they were "or" conjunctions, This mode can be used
by some wusers who habitually say "and" when they mean
"or" in document requests, When X is T the special mode
is set, and when X is NIL it is reset,

(PARSELIST SENTLIST)

PARSELIST 4is a function for debugging a system, It
takes sentences successively from the .iist SENTLIST and
processes them as queries,

(PARSER STRING MODE ALTS)

PARSER is the controlling routine o©of the ©parsing
component, STRING is the sentence to be parsed and MODE
is a variable which governs the mode in which the parsing
is to nproceed. (ALL causes all parsings to be found,
SPLIT causes all parsings to be followed in parallel, and
non-null values in general cause automatic sSelecton of a

D.18

Page 19

new alternative number, whenever a blocked configuration
is encountered,) ALTS i3 a list of alternatives which is
NIL unless PARSER is being called to continue looking for
parsings, in which case it will be list of alternatives
generated by a previous call to PARSER, PARSER returns a
list whose first element 18 a list of parsings found, and
whose second element is a list of alternatives which it
did not try It is this 1ist of alternatives which can be
used to continue looking for additional Parsings if the
first one is found not be Satisfactory,

PARSER manages a 1list of active configurations
(ACFS) which 4ts calls the function STEP to advance. 1A
configuration consists of a complete record of a state of
the machine -~ 4i,e,, a 1list of the state, stack,
registers, contents of the HOLD list, and a path entry
which records <the history of how the cofiguration was
reached from the initial configuration,

PARSER runs in two modes depending on the setting of
a flag LEXMODE, In the normal mode, LEXMODE is NIL angd
the parser proceeds by calling LEXIC to determine the
next word in the string, LEXMODE is set when the parser
is operating on a reduced condfunction during the part of
the ©processing when the Suspended configuration for the
first conjunct is being resumed on a tail of the string
consumed by the second conjunct (See SYSCONJ and
CONJOIN), At this time, the parser follows the trail
(TRAIL) 1left by the previous parsing of this substring,
and the normal lexical analysis 1s bypassed, This is due
to the fact that the two components of the conjunction
are required to analyze the shared substring in the same
vay.

If after calling LEXIC, ¢the current word LEX is
Sstill an unknown word, then the configuration is added to
a list of blocked configurations and the parsing is
aborted under the assumption that no other alternatives
will be able to parse beyond the unknown word in the
sentence, When LEX is a Kknown word, however, PARSER
calls the function STEP to advance the active
configurations and produce a nev list of active
configurations at the next position of the input string,
it advances the input Strinog to the next position and
repeats, If at any time there are no new active
configurations, then depending on tne Setting of the flag
MODE (which is normally set to the value o0f the <global
flag PMODE) it either goes into a break at location HELP,
or it selects an alternative to be tried by <callinag the
function DETOUR at location ALT. If there are no more
alternatives, hut there have been Some complete parsings
found (if so they are stored on VALUES by the function
POP which is executed in interpreting the POP arcs in the

D.19

Page 20

grammar), then PARSER returns those parsings, If this
call to parser was not 1itself an attempt to find
additional parsings (in whicn case ALTFLAG would be set),
then the fallure to find any parsings of the sentence
vill cause a call to ASSIST, This is the function which
would eventually contain facilities for making helpful
diagnostic comments to the user as to the likely cause of
the error, and perhaps evenh correct them and continue,
At the moment it merely goes into a break (if the flag
AHELP is set) at the blocked configuration which got the
farthest into the string bhefore blocking,

The various locations ALTCONJ, ALTLEX, and ALTARC

know how to restart their corresponding types of
alternatives, which have been found on the ALTS 1list by
DETOUR,

(PATH,ARC PATH)

PATH.ARC is a function which extracts the last arc
folloved from a path ehtry,

(PATH,STRING PATH)

PATH,STRING is a function which extracts the current
string positien from a path entry,

(PATH,VAL PATH)

PATH.VAL is a function which extracts the VAL (i.e,
the vord or construct “consumed" by the last transition)
from a path entry,

(PLOG N FILE)

PLOG is a function which prints out a recordq of the
sentence processing to a file, N 18 the number of phases
of the processing to be oprinted (1, parsing, 2.
interpretation, and 3, eXecution), It is called by QGO
when LOGPLAG is set,

(PLURAL ENDING)

PLURAL is a furction for use as a condition in the
MORPHTABLE of the morphological analysis component, It
tests whether the dictionary entry for the current word =
is marked as a noun with regular inflection of the type
ENDING,

(PNCHECK NP PNCODE)

PNCHECK (person-numbelr check) is the function which
checks for person-number agreement between a noun phrase

Page 21

(NP) and a person-number code (PNCODE), It is used in
the grammar to check person-number agreement between
verbs and their subdects,

(POP POPVAL POPFEATURES)

PCP is the function which returns from a recursive
call 1in the transition network grammar, It is used by
the function STEP for the interpretation of POP arcs, and
can occasionally be wused as an action on an arc of the
grammar, POPVAL is the structure that is to be returned
from the recursive <call (and bound to the current
constituent pointer =) and POPFEATURES 1is the 1list of
features which is to be associated with the current
constituent,

POP restores the configuration which was saved on
the stack at the time of the PUSH which initiated the
present level of computation and performs the actions on
the push arc, after setting the flag NOMOVEFLAG which
indicates that the function TO at the end of the PUSH arc
is not to advance the input string (since it has already
been advanced by the recursive <computation), If the
stack is empty, and the STRING is also empty, then POPVAL
is a complete parsing of the sentence, and 1s added to
the 1list VALUES which is being ma.ntained by PARSER, It
the string is not emptY at this time, then the
configuration is blocked,

(POPARC,FEATURES ARC)

POPARC,FEATURES is a function for extracting from a
pop arc a form which evaluates to a list of features to
be associated with the construction which is Dbeing
returned by the pop arc,

(POPARC,FORM ARC)H

POPARC.FORM is a function which eXtracts from a pop
arc a form which 1s to bhe evaluated to produce the
structure which is to be returned by the pop arc,

{POPCONJ)

POPCONJ 1is one of the functions used for the
facility which handles reduced conjunctions (see CONJOIN
and SYSCONJ)., A call to POPCONJ is placed on the stack
by CONJOIN when it resumes the suspended configuration
for the first conjunct in a conijunction, This «call to
POPCONJ will be invoked when the first conjunct has been
completed, at which time it will determine whether the
two components of the conjunction are compatible, compute
the syntactic representation of the conjoined phrase, set

Page 22

up a configuration on the alternatives 1lis¢ for the
computation which i1s to be resumed at this point, and
abdicate «control by returning »END as its value, This
will enable DETOUR to pick up the configuration from the
ALTS list and continue parsing, (This method of
proceeding with the parsing is used to restore the value
of the input string, which has been temporarily destroyed
by the operation of STEP {a LEXMODE mode, without
interfering with any other active configurations which
may be on the current ACFS list,)

(PPATH,ARCONFIG PPATH)

A partial path (PPATH) is a path entry without a VAL
(that is, it represents a path which has decided what arc
to take next but does not Yet have the result of the
transition), It is saved 4{n the stack entry when a
computation pushes to a loWer level and is used to build
the full path entry when the embedded computation
returns, PPATH,ACONFIG is a function which extracts the
previous augmented configuration from the PPATH entry,

(PPATH,ARC PPATH)

PPATH,ARC i8 a function which extracts the arc
followved from a PPATH entry,.

(PPATH.BACK PPATH)

PPATH,BACK is a function fer backing up along the
path entries for a configuration, Its argument is a
partial path (PPATH) which consists of a record of an
augmented configuration (ACONFIG) and the arc which was
followed from that configuration, It lacks the
information about the comPutation of that arc which is a
part of a complete path, (See the listing FORMATS in the
computer listing for the gspecification of the LISP
structure formats for partial paths, paths,
configurations, and augmented <configurations,) 1If the
partial path PPATH is not the first one 1n a call to the
network, then its 1last element is tne full PATH entry
recording the configuration prior to the current one, and
CDR of this is the partial path associated with it, 1If
there is no previous path as the last element of PPATH,
then this configuration isS the first one after some PUSH
(or indeed the first one in the analysis of the string)
and the preceding wpartial path 18 taken from the STACK
assoociated with PPATH,

(PPATH,CONFIG PPATH)

PPATH,CONFIG is a function which eXxtTacts the
previous configuration from a PPATH entry,

Page 23

(PPATH,HOLD PPATH)

This function extractS the HOLD list from a partial
path,

(PPATH,PATH LIST)

This function extracts the previous path entry from
a partial path,

(PPATH,.REGS PPATH)

This function extracts the registers 1list from a
partial path,

(PPATH,STACK PPATH)

This function extractsS the stack from a partial
path,

(PPATH,STATE PPATH)

PPATH.STATE extracts the previous state from a PPATH
entry.

(PPATH.STRING PPATH)

PPATH,STRING extracts the string position at the
beginning of the transition from a PPATH entry,

(PPT XTR FILE)

PPT (pretty print tree) prints a parse tree (XTR) in
a pretty format to the file FILE, The function which
actually does the printing is PPT1,

(PPT1 XTR XID FILE)
See PPT,
(PRINTPARSES FILE)

PRINTPARSES is the function used by SENTPROC to
printout the result of the parsing when the appropriate
flags are set, If the global flag PPTFLAG is set, then
this happens using PPT to Obtain the printout in a pretty
format, Otherwise, the Printing is 1n the ordinary
parenthesis notation corresponding to the internal list
structure,

(PUNCTALIZE STRING)

Page 24

PUNCTALIZE is a function called by LEXPAIRS as part
of the LEXIC package to Perform punctuation analysis on
the first atom in the list STRING, PUNCTALIZE is called
when ~the next “"wordq"™ in the sentence i8S not in the
dictionary to see if it might really be a known werd with
punctuation at the end or two words run together with
punctuation, If ¢this i8 ¢the case, then PUNCTALIZE
returns an updated string (or a list of alternative such
strings) with the word and the punctuation Separated,
Otherwise it returns NIL,

(PUSH PS)

PUSH is the function used by STEP to interpret PUSH
arcs in the grammar, It can also be used as an action on
the arcs of the grammar under certain circumstances, In
the normal mode (when LEXMODE is not set) it saves the
current sState, register contents, actions to be
performed, HOLD 1list, and partial path on the stack and
starts a nev configuration at the lower level with ¢the
initial register contents frem SREGS (thoSe register
contents sent down by calls to SENDR), When LEXMODE is
Sset, then PUSH must take its constitutent from the trail
which the parser is following, If nothing was sent down
with a SENDR, then it merely takes the value stored in
TRAILVAL for the trail being folloved, If there were
register contents sent dov¥n, hovwever, then it calls REDO
to follow the path associated with the <computation of
that <constituent to construct the neW constituent based
on the new initial registers sent down,

(PUTLEX STRINGPOS LEXLIST)

(Q

PUTLEX is a function called by LEXIC to add the list
of alternative lexical analyses at the current stringpos
to the table LEXTABLE, Thus, when other paths encounter
the same String postion, the lexical analysis will be
available there and will not be recomputed,

» QUERY)

0 is the function called by TALKER for processing
input sentences, It sets the variable SENTENCE, calls
SENTPROC, and logs the resulting output if LOGFLAG {is
set.

(IGO0 LABEL)

QGO is the function called by TALKER to continue
looking for more parsings, to TrepPeat a semantic
interpretation, etc, It <calls SENTPROC with a label
LABEL which specifies a location witnin SENTPROC at which
processing is to bhe started,

Page 25

(QSTART)

OSTART is a predicate used in the grammar at the
beginning of a sSentence to determine whether it looks
like a question -- l.e., it starts with an interrogative
word or with an auxiliary Verbh,

(REDO TRAIL REGS)

REDO is a function <called by PUSH when it is
following a trail during ¢the LEXMODE phase of the
recognition of a reduced conjunction, It will redo the
computation indicated by TRAIL starting with the register
contents REGS instead of those which were originally usead
by TRAIL,

(RELATEDWORDS WORD)

RELATEDWORDS is a function used by DICTFETCH to
determine the list of words related to a given word that
should also be fetched into the in-core dictionary with
it, TIf returns any words Which are used in substitute or
compounds entries in the dictionary entry for the word,
and if the word is irregular {t returns the root,

(RELATIVIZE FORM)

RELATIVIZE does a top level search of the list FCORM
for the first NP node. When found, 1t converts it into
an appropriate form for sending down into relative
clauses, i.,e, it replaces the determiner with (DET WHR)
and removes any prepositional phrase or Trelative <clause
modifiers. RELATIVIZE is Used in state S/QP1 to make the
rest of the sentence followirng a fronted Qquestioned
prepositional phrase, a relative clause on the head noun
of the PP,

(REQUESTDEF LEX)

REQUESTDEF 4is the function which 1is called to
interact with the user of the system when an unhknown word
is encountered by the parser, It prints out a <comment
followed by the unknown word, and goes into a break to
allow the user to define the word (using DDEF) or to
change it (usina CHANGEWORD),

(RESUME ARGS)

RESUME is a function which can be called on an arc
of the grammar to Tresume a PUSH computation which has
been assigned a feature RESUME by the function RRSUMETAG,
This provides for the termination of a PUSH computation
at one point in the string and resuming it Jater at

D.25

Page 26

another part of the string, amd it provides a mechanism
for handling certain phenomena which would be <called
right.extraposition transformatjons in transformational
grammar theory, ARGS is a list of registers which are to
be sent down to the 1lower network when the PUSH is
resumed,

(RESUMETAG STATE)

RESUMETAG is a function for computing a RESUME
feature for a configuration which will enable it to bhe
resumed later, beginning in state STATE. It is used by
arcs of the grammar in conjunction with the function
RESUME,

(RFEAT , RARGS)

REFEAT 1is a function for retrieving syntactic
features from the dictionary entries for words, ARGS is
a list whose first element is the name cf the syntactic
feature desired, and whoS8e second element indicates the
word whose dictionary entryY is to be consulted (which may
be indicated either by the name of a register which
contains it, but the special pointer =, or by some other
LISP expression),

(SAMPLEP WORD)

SAMPLEP 4is a function used by the morphology
component to recognize VWords that lcok like sample
numbers -~ i,e, an 5 followed by five di1gits,

(SBUILD)

SBUILD is the functionh called by the grammar for
building the syntactic Structures of sentences, It
gathers up the various pieces of the structure from the
registers in which they have been stored and assembles
them into a syntactic tree using the function BUILDOQ,

(SCANSTACK TEST)

SCANSTACK is the function which scans the stack
locoking for a stack level wnich satisfies the test TEST,
It is used in LIFTR and GETR for locating levels of the
stack where registers are to he set or interrogated,

(SCOMP V)

SCOMP is a function which tests wnether a verb V
takes a sentence compleMent by checking the dictionary
entry for Vv,

Page 27

(SENDACTP ACTION)

SENDCTP is a predicate used by STEP and REDO for
identifying actions which send register contents down to
lower levels (i.,e. SENDR and SENDRQ),

(SENDR REG FORM)

SENDR is a function which sets the contents of the
register REG to the value of PFORM at the next lower level
to which control will be passed by a PUSH arc,

(SENDRQ REG FORM)

SENDRQ is 1like SENDR wexcept that FORM is not
evaluated,

(SENTPROC SENTENCE LABEL)

SENTPROC is the major dispatching routine for the
processing of an input sentence, It dispatches the input
to the various routines PARSER, SPROC, and EXECUTE, times
computations, prints out intermediate results and
timings, and logs the results, as appropriate, It also
provides for the feedback to the parser to obtain
additional parsings if the semantic interpretation of the
first parsing fails (up to maximum number of times
specified by MAXREPARSES), and for the redoing of a
previous exXecution or interpretat.on or the continuation
of parsing by calls which specify a LABEL = EXECUTE,
INTERP, or PARSE, respectively,

(SETR REG FORM)

SETR is the function Which sets the contents of a
register REG to the value of form at the current level of
processing,

(SETRE REG FORM)

SETRE is like SETR excCept that REG 1s evaluated to
obtain the name of the register to be Sset,

(SETRQ REG FORM)

SETRQO is 1like SETR except that FORHN is not
evaluated, but taken literally,

(SETUP FILENAME)
SETUP is the function to be called by a user when he

enters the sytem to Set uUp the lower fork, FILENAME is
the name of the lowver fork tile -z usually

Page 28

<WARNER>LOWFORK,SAY,
(SHOWTIME CONSES TIME FILE)

SHOWTIME 4is ¢the function which prints timing
information to a file in the BBN LISP sySteam,

(SPLIT , SPLITARCS)

SPLIT is a function which can be used on arcs of the
grammar to cause two Oor more alternatives to be followed
at once, SPLITARCS is a list of alternative
continuations of the arc on which the SPLIT action
occurs, and all such alternatives will be followed 1in
parallel, This feature has not been used in the current
grammar.

(SPOP POPVAL POPFEATURES)

SPOP is a function which is used to perform the
selective modifier placement triggered by the SPOP arcs
in the grammar, It locateS the alternatives (if any) ¢to
the arc which pushed for the constituent about to be
popped and determines whether that configuration could
have popped instead, If so, if follows out the
possibilities of that alternative to see if any of the
configqurations that could be reached by successive JUMPS
and POPs (or SPOPs) <couUld also push for the same
consituent, If it finds any other contigurations which
could have pushed for this constituent, it considers them
all as candidates and decides which one to follow on the
basis of semantic entries in the dictionary,

(SPROC P}

SPROC is the functionh which begins the semantic
interoretation of the node P and returns the list of
possible semantic interpretations, It calls the function
INTERP which doces the work,

{STACKELT.PPATH LIST)

this function is used to extract the PPATH entry
from an element of the stack,

{STACKELT,REGS STACKELT)

STACKELT REGS 1is a function for eXtracting the
register contents of a higher-level computation saved on
the stack from the stack entry,

(STEP CONFIG ALT)

Page 29

STEP is the major function of the transition network
parser, Its dHob is to take a single configuration
(CONFIG) from the active configurations 1list of PARSER
and compute from it a list of configurations which are
possible at the next point in the nput string, It takes
the 1list of arcs for the state of the configuration and
considers each in turn until {¢t finds one which «can b)e
followed, It also interprets the conditions and actions
on the arcs, and generates ALTARC alternatives on the
ALTS 1list for any arcs wvhich remain untried when it
decided to follow one,.

STEP is also the function which is called to pick up
the processing of an alternative taken from the ALTS
list, In this case, the argument ALT will be Set to the
alternative to be restarted, and the setting of CONFIG
will be irrelevant, In this case, STEP will branch to
location ALT where it determines the type of alternative
and does the appropriate thing to resume the processing,

At location 1@, STEP unpacks the <configuration
CONFIG into its component parts (STATE, REGS, HLIST, and
PATH), and at location L ', it begins the determination of
the list of arcs to be considered, If, however, the time
already spent in the parSing exceeds a global 1limit
MAXTIME, the parsing is terminated with an appropriate
comment, If the current LEX (the current word 1in the
string) 1is marked with the property LEXARCS, then it is
an "interruprt word"” and the list of arcs to be tried is
not taken from the value of the state name as would
usually be the case, bDbut is instead computed by the
expression Wwhich is the value of the property LEXARCS.
This facility allows for the convenient handling of
special function words Wwhich can occur at almost any
point in a sentence with a regular effect, For example,
the conjunction scope indicators "both" and "either" are
handled by this facility in the current system, Another
special case for the determination of a list of arcs
other than that listed for the state 1is the SYSCONJ
facility, If the flac SYSCONJFLAG is set and the current
LEX is a conhjunction and there are no CAT CONJ arcs
leaving the current state, then the SYSCONJ facility
provides its own special default CAT CONJ arc in place of
the normal 1list of arcs, This doesS not happen when
LEXMODE is set, however (i,e, when STEP 1s already
interoreting a part of a reduced conjunction), When the
global flag SPLIT is set, the list of arcs will be moved
to a 1list of *"untried” sSplit alternatives (SPLITS) and
control will branch to END where there 1is a test for
uncompleted SPLITS {(i.,e. alternatives to be followed in
parallel) before returning. MNormally, however, the 1list
of arcs is ta¥ren from the value of tne state, and control
passes to 12,

D.29

Page 30

L2 begins the basic loop which tries successive arcs
from the 1list ARCS, If ¢there are no more arcs, then
depending on the settings of varjous mode variabples and
other parameters, control either passes to END er HELP,
Also {f MODE is non-null, the blocked configuration is
added to the 1ist B1OCKS (for later use by LONGBLOCK in
ASSIST). If the number of blocked configurations exceeds
the global parameter MAXBLOCKS, the parsing 1is
terminated.

L3 begins the processing of the arc selected bY
initializing the wvalues of s, FEATURES, SREGS, and
NOMOVEFLAG, The atom * is the pointer to the current
constituent (initially it (s equal to the current word
LEX, but after popping from a lower level it is the value
of the constituent returned, and on a virtual ARC it is
the value of the constituent which is taken from the HOLD
list), FEATURES is the list of features associated with
the current wvalue of =+, and SREGS 1is the list of
registers which have been Sent d4own tec the lower level by
SENDR actions immediately Prior to a PUSH to a lower
level), NOMOVEPLAG is a flag which indicates whether the
input string is to be advanced after the transition
caused by the arc (it is initially set to NIL indicating
that the string is to be advanced, but various actions on
the arc can cause it to be reset), The major part of the
function STEP consists of ¢the SELECTQ at location L3
vhich determines the tyPe of arc and performs the
appropriate actions,

A CAT arc is followed if LEX can be a member of the
syntactic category 4indicated by <the label on the arc
(ARC.LABEL ARC), IXIf LEXMODE is set, however, this arc
can only be taken if the word was also takenh as a member
of this categoery in the trail which is being followved,
The wvalue TEMP which is set by the cail to CATCHECK or
taken from the trail (TRAILVAL) 18 a form-features 1list
wvhose CAR is the root form of the word LEX and whose CDR
is a list of inflectiona) features for the word, These
values are bound to * and FEATURES, respectively, as a
result of choosing a CAT arc, and control ©passes to
location TST which checks the conditions associated with
the arc,

A PUSH arc indicates a recurs’)ve application of the
network to find a phrase of the type recognized by the
state which is given as the arc label, The condition on
the arc 1is tested before the PUSH im order to determine
wvhether to perform the PUSH, If LEXMODE is set, then the
PUSH does not occur unless tnhne corresponding entry on the
trail being followed was also a PUSH to the same state.
To facilitate the use ©0f SENDR's to 8Send register
contents down into the lower level prior to the push,

Page 31

there is an optional <constituent ot the PUSH arc
immediately after the condition on tne arc which consists
0of a 1list of actions to be executed prior to the actual
call to PUSH, This list of actions is 1indicated by an
initial element "iv, Also for the same reason, any
initial sequence of actionS of the SENDR type (tested DY
SENDACTP) are executed prior to the PUSH, The call to
the function PUSH wil) save the current state and
register contents and the uncompleted actions on the arc
on the pushdown stack for continuation after the embedded
phrase has been recognized.

POP is a "pseudo" arc in the sense that it has no
“destination” at the end. Rather it indicates a return
from an embedded computation to the <configuration which
PUSH'ed for it, It is represented as an arc so that its
choice can be ordered with respect to those of the other
arcs and So that it can be made conditional on the
context by using a test on the arc, POP arcs are not
permitted when LEXMODE is Set, since the PUSH'S are never
actually executed in this case (and therefore, the trails
wvhich are being followed never have POP arcs on them),
POP'sS are also forbidden if there are entries on the HOLD
1ist put on at this level Which have not Yet been used bY
any virtual (VIR) arc (this is part of the HOLD facility
for dealing with left-extraposition transformations),
SPOP is a variant of POP which is used 1n Some Systems
for selective modifier placement but is equivalent to POP
in the current system,

A JUMP arc is an arc which performs some actions but
does not advance the input string, The label on the arc
names the state to which contrel is to go after the
actions are executed i1f there is no terminating action on
the arc,.

A VIR (virtual) arc is an arc Vhich picks up a
constituent from the HOLD list (placed there bY a call to
HOLD on some arc of the grammar) and treats it as if it
had dust pushed for and found the constituent at this
point in the string, It sSets * and FEATURES to the
values taken from the HOLD list and then executes the
actions on the arc (after Setting NOMOVEFLAG to prevent
the input string from advahcing),

A WRD arc tests for the presence of a particular
word 4in the input string, Similarly a MEM arc tests for
one of a specific list of words, A TST arc allows for
the testing of an arbitrary condition expressed in LISP
as the condition on the arc, The label on a TST arc has
no effect on the operation and can be used for purely
mnemonic purposes by the grammar writer. A SUSPEND arc
is an arc which suspends the processing of the current

Page 32

State with an {incremented weight (incremented by the
amount indicated in the arc label), This can be used to
control the order in which parsings are discovered by
suspending "umlikely” alternatives to be tried only after
more likely possiblities have been tried, There is also
a4 SUSPEND action which can be used on an arc to suspend
the processing of just that arc,

A SPLIT arc is essentially a group of arcs grouped
together with the “"conjunction” SPLIT to indicate that
the arcs in that group are to be followed in parallel.
It is similar ¢to the SPLIT action which can be used on
arcs to indicate parallel alternative "tails" for a
single arc.

A DO arc is an unconditional 1list of actions to Dbe
performed with a destination specified at the engq,

The location TST performs the checking of conditions
on the arcs for a number of different arc types, and
similarly the location ACT executes the actions on the
arcs, The location ALT performs the appropriate actions
for resuming an alternative, and HELP provides a break
for user interaction in certain cases,

The location END is entered when a given
configuration weither blocks or is completed, It checks
whther there are any uncoMpleted «configurations (UCFs5)
placed there by SPLIT actions on arcs, and if so
processes thenm, It also tests for any uUnprocessed
configurations (SPLITS) placed there by a SPLIT arc or by
the mode flag MODF bheing set to SPLIT, and it processes
all of these before returning, When all "parallel"
computations have been performed, it returns the 1list
(VCFS) of resulting configurations which have been
constructed, {The actual construction of the resulting
configurations is performed by the function TO when it
occurs as termimal action on an arc,)

(STORALT ALT)

STORALT is the function wused in many bplaces for
placing alternatives on the ALTS list,

(SUBJLOW VERB)

SUBJLOW is a predicate which i:ndicates whether the
indicated verb undergoes Subiject lowering (as opposed to
object lowering) when it occurs with both a direct object
and a to complement, SUBJLOW i1s true of "promise" type
verbs where the interpretation of "I epromised John to go"
means that I will be going (as opprosed to "I ordered John
to go").,

Page 33

(SUPFORM ENDING)

SUPFORM is a predicate for use in MORPHTABLE entries
for testing the ¢type of conjugation which an adjective
underqoes for the superlative form,

(SUSPEND N)

SUSPEND is an action for use on arcs of the grammar
for suspending a given computation 1in favor of "more
likely” ones, It increments the weight associated with
the current computation bY the amount N and generates an
ALTARC alternative en the ALTS list,

(SUSPENDW WEIGHT INCREMENT)

SUSPENDW is the function wnicn computes the
resulting weight determined by the current weight WEIGHT
and the increment specified on a SUSPEND arc (INCREMENT),
It currently adds the two, but is factored out as a
separate function So that we <could experiment with
multiplicative rather than additive weights,

(SYSCONJ STATES)

SYSCONJ is the action which invokes the system
conjunction (SYSCONJ) facility for reduced conjunctions,
It can either be used on CAT CONJ arcs by the grammar
writer, or it will be suPplied automatically for states
which don't have CAT CONJ arcs if SYSCONJFLAG is on, It
is the first function of the trio of SYSCONJ functions
(SYSCONJ, CONJOIN, and POPCONJ) to Dbe executed, It
causes the insertion of a Special stack entry with a call
to CONJOIN into the stacks of a set of restart
configurations {computed hy CONJSTARTS) and the
generation of an ALTCONJ alternative for each such
configuration, It then returns =END so that STEpP will
terminate the curremnt configuration and pick up one of
the generated ALTCONJ alternatives,

(T,NODE NODE)

T.NODE is a fumrction ¥which extracts the node name
from a node in a tree fragment,

(T.REF NODE)

T,REF is the function which assigns to nodes in the
syntax tree a reference which is used for associating
information with that node 4in tne TAGLIST, It is
currently identical with the LISP pointer to the node,

Page 34

(T.SONS NODE)

T.SONS is a function for computing the list of the
sons of a node of a tree, It depends on the notation
being used for trees in tnhe system, If it 1is the
tvo-paren notation, then the sons are the CADR of the
node; othervise they are the CDR,

(TAILS LIST)

TAILS is a function for enumerating the tails of a
list, (E.9. the tails of (A B C) are (A B C), (B C) and
(C).) It is used by CONJOIN for computing the possible
tails on Which the suSpended first conjunct of a
conjunction may be resumed,

{TAILST LIST)

TAILS1 is like TAILS but ¢ omits the singleton
tail, (E.g. TAILS1 of (A B C) gives (A B C) ang (B C) ,
but not (C).)

(TALKER MODE)

TALKER is the major executive of the English
Language preprocessor The £first thing to be done by a
user after loading the system is to call TALKER with an
argment MODE (usually NIL) to indicate the mode in which
he wants to operate, (MODE of NIL indicates use of ¢the
mode settings as they exist at that time, without change,
vhile a non-null MODE will cause MODESET to be called to
Set the appropriate mode variables,} TALKER takes care of
the interaction with the uSer, accepting sSentences and
LISP commands as input, and performing the appropriate
actions for each., In the BBN LISP system, it also takes
care of saving the 1input sentencesS on a history list
Wwhich enables the user to refer to and reuse the results
of his previous typein,

(THATCOMP VERB)

THATCOMP is a predicate which tests whether a verb
can take a THAT complement,

(TIMEP X)

TIMEP 1s a functionh which <can be called for
morphological analysis of an atom which looks like a time
(i.e, a number less than 24 followed by a colon follovwed
by a number less than 63),

(TQ S)

Page 35

TO is the function used by arcs in the grammar to
indicate the destination (next state) for an arc, It
computes the configuration which results from the
transition and returns a Jabel ¢to STEP (through ACT)
indicating what location it should pass control to (which
depends on such factors as whether NOMOVEFLAG is set,
vhether it is at the end of the string, etc.,)

(TOCOMP VERB)

TOCOMP is a predicate which tests whether a verd can
take a TO complement,

(TRACER , ARGS)

TRACER is a function which is called at many points
in the ©parser for providing a ¢tracing of the course of
the parsing when the flag TRACE 1is set, It 41is an
extremely valuable tool for debugging grammars, and is
also a useful instructiocnal tool for teaching the
operation of the parser and the grammar,

(TRAIL PATH)

TRAIL makes a list of the path entries in a path in
the order in which the transitions occur so that they can
be followed by the parser in LEXMODE mode, (The normal
order of entries in a path {s reversed and "right
nested",)

(TRAILY PATH)

TRAIL1 is like trail except that it skips the
confiqurations that occur immedjately after JUMP and VIR
transitions.

(TRAILS PATH)

TRAILS is a function called by CONJOIN to make a
list of the trails at different levels of the analysis of
the right-hand shared portion of a reduced conjunction.
These trails are the ©possible trails on which the
suspended first component of the conjunction <can be
resumed,

(TRANS VERB)

TRANS is a predicate which tests whether a verb 1is
transitive (i,e, can take a direct object).

{TRANSCOMP VERB)

Page 36

TRANSCOMP is a predicate which tests whether a ver)d
can take both a direct object and a complement,

(VPARTICLE , ARGS)

VPARTICLE is a function fer testing vhether a verb
combines with a particle to form a verdb (e,g, ™call up,"
etc.), ARGS is a list whoSe CAR specifies the verbp in
question (usually by naming the register which contains
it) and whose CADR specifies ¢the particle in question
(again by naming a reglister or bY reference to the
pointer =),

(VPASSIVE V)

VPASSIVE is the predicate which tests whether a verb
V can be passivized, This i1s true erxther if it is so
marked in the dictionary or (as a default) Lf it 1is
totallYy unmarred for syntactic features,

(VPREP ARGS)

VPREP is a function which tests whether a verb cah
take a prepositional modifier with a given preposition,
ARGS,

{VIRANS , ARGS)

VTRANS is a function which tests whether a given
verb 1is transitive (i,e. whether it can take a direct
object), This is true either {f the verb is so marked in
the dictionary under the vproperty FEATURES, or (as a
default) if the verdb is not marked with any syntactic
features at all,

(WRD . ARGS)

WRD is a function for use in <conditions in the
grammar to test whether the current word *» or a word in
some register is a member of a list of words, CAR of
ARGS is the list of words to be tested, and CADR of ARGS
specifies the word to be tested,

Page 37

II, SEMANTIC INTERPRETATION FUNCTIONS

(% N)

The function # is used {in templates of semantic
rules to reference the node of the tree that matches the
node numbered N in ¢he tree fragment used for the match,
For example, in a template (NP,N (TESTFN (# 1))), the
expression (# 1) will evaluate to the node of the tree
which matches node 1 of the fragment NP,N, TESTFXN in
this case is a hyrothetical condition which 18 to be true
of node (# 1),

(=FLAG X)

#*FLAG is used by the interpreter in interpreting a
node as a topic, 1If the user has emphasized any phrases
by sa¥Ying, for example, ‘“vugs, in particular"” or
"egpecially vugs", “vugs", as a topic, is starred:

(FOR EVERY X1 / DOCUMENT : (ABOUT X1 (VUG *),..)

(PRINTOUT X1)).,

(AGREEMENT ANTECEDANT SPECIFIER NOUN ADJ SEMARKERS)

AGREEMENT is a predicate which tests anaphorism -
antecedant agreement, The criteria for agreement are:

7. The candidate ANTECEDANT has sSemantic markers
which match those Trequired of the true antecedant
(SEMARKERS)., It is not always possible to decide what
Semantic criteria the anhtecedant should meet, Hence,
SEMARXERS is an optional arqument, Semantic requirements
are sometimes made by the dominant verb, For example, in
“"Does it contain Aluminum?” the antecedant ot "it” must
be a sample, for this gquestion tO make sense to the
system, SEMARKERS for the above would be {(SAMPLE),

2. A pronominal anaphorism matcheS any candidate
antecedant,

3. If the anaphorism rests on its determiner e.g.
"those analyses", the head noun of the antecedant must
match the head noun of the anaphorism,

4, If the anaphorism contains anY adjectives e.g,
"those barium analyses"”, the antecedant must contain at
least one of them,

(ANTECEDANT ANAPHORISM MARKERS)

ANTECEDANT locates the antecedant of an anaphorism,
MARKERS is an optional argqument. When ©present, it
contains a list of semantic markers, one or more of which
must be characteristic of the antecedant,

Page 38

(ANTEQUANT VARIABLE)

ANTEQUANT inserts the quantified antecedant found by
ANTECEDANT into the 8emantic Jnterpretation under
construction, If the antecedant {8 a proper noudn,
ANTEQUANT acts like QUOTE in the right hand side of a
rule, otherwise it acts like QUANT.

(ANTORDER V1 V2)

ANTORDER is a compare function used by SORT 1in
ordering the 1list of poOssible antecedants, SORT is
called following the interpretation of a request,
ANTORDER returns T is V1 should precede V2 in the list,
ANTECEDANTS. For example, V1 should precede V2 if v1 \is
a variable used in the latest request and V2 is not,

(AVERAGE?)

AVERAGE? is a help function that i1s called by the
interpreter when the user refers to “the concentration of
X", Since the system knowS about many concentrations of
X, ome for each analysis of X, AVERAGE? asks the user if
he means "the average concentration of X". If he does,
the syYstem returns the average over the concentrations
given in all analyses of X.

(CCHECK TEMPLATE MLIST)

CCHECK 4is the function which checks semantic
conditions in templates during the matching of semantic
rules by the interpreter, TEMPLATE is the template in
question, and MLIST is a LIST of possible matches for the
template which are to be screened by CCHECK, Each
element of MLIST 1s an ALIST vhose elements are dotted
pairs of node numbers in the template and their
corresponding matches in the tree,

(CONSTITUENTS NODE)

CONSTITUENTS is the function which when applied to a
node of a parse tree Yields a 1list of the immediate

constituents (daughters) of ¢that node. For the tree
notation <currently in use, this is simply the CDR of the
node,

(DEPAULTSEM P TYPEFLAG)

This function is used in the semantlc interpretation
system to provide the default interpretation T for the
restrictions on the range of gquantification of a noun
phrase, when there are no restrictions implied by the
RRULES, It is called by INTERP,

Page 39

(DOCP X)

DOCP is a predicate that tests whether X is a
document according to LSNLIS conventjons, i,e., X has the
form DYY-YYY,

(DRULEF p)

DRULEF returns a 1list of DRULES to try vhen
interpreting the determiner se¢ructure on the noun phrase
P.

(EQU . ARGS)

BQU is a function for use in the templates of
gsemantic rules, ARGS i8 a list whose first element is a
number, EQU checks whether the terminal string dominated
by the node corresponding to this number in the template
match is identical with the remainder (CDR) of <the 1list
ARGS,

(GETREFS P REFLISTS)

GETREFS is a function used in the semantic
interpretation component by the function SORTREFS, which
sorts the list of sub nodes to be 1nterpreted 1intec
left-to-right order, It serves double duety as a
predicate indicating whether p is a node which is to be
interpreted, and if 8o, returning the list of the
alternative reflists which belong to that node, For more
detail, see SORTREFS,

{(GETTAG P TAGNAME)

GETTAG is a function for retrieving 1items from
TAGLIST, a global variable which holds tags associated
with nodes in the tree and behaves like a property 1list
for tree nodes, GETTAG returns the value of the tag
TAGNRAME for the node P,

(HELPER SS COMMENT)

HELPER is an interactive help routine which many
semantic inter. preter functions call when theY need help
from the user, For example, INTERP calls HELPER when it
can't interpret a node, BRMATCH calls HELPER when a node
can have several interpretations though only a single
interpretation 1s allovable (FAIL mode)., ANTEQUANT calls
HELPER when an antecedant 1s missing its INTENSION,

(IMPORT VBL)

Page 40

IMPORT assigns an importance number toc a quantified
variable, IMPORT is called by ANTORDER which uses it to
order the variables according to their likelihood of
being referenced anaphorically, The importance of a
variable is raised if it has any class restrictions, It
is also raised if the class has to be computed, rather
than merely being read off a list,

(INTERP P TYPEFLAG)

INTERP is the main function of the Semantic
interpretation component, It computes the interpretation
of the node P “as" or "with respect to" the flag
TYPEFLAG, That 4is, TYPEFLAG is a parameter which tells
INTERP how to interpret the node P, For example, to
interpret a noun ©phrasSe as a set instead of the normal
quantification over individuals one can uUse the typeflag
SET, For 1interpreting normal noun phrases, the three
phases of interpreting the determiner structure, the noun
itself, and the restrictive modifiers, are indicated by
the typeflags NIL, NRULES, and RRULES, The NIL <typeflag
is the normal interpretation which 1s assumed if no other
typeflag is specified, The typeflag TOPIC is wused to
indicate the 4interpretation of a node as a Boolean
comhination of keyphrases,

INTERP's first action is to determine if the node P
has already been interpreted with this typreflag, in which
caSe 1t recovers the interPretatijon from the TAGLIST and
returns without redoing the interpretation, Also for
special TYPEFLAG's HEaAD, TERM, AND IDENTITY, wvhere the
interpretation does not require the use of semantic
rules, INTERP returns immediately with the appropriate
interpretation, INTERP Treturns as 1tS value a list of
alternative which consists of pairs of Semantic
interpretations and governing quantifiers, Each pair ,
called an SQ-PAIR consists of a semantic interpretation
(SEM) which is to be attached to the current node, and a
quantifier (QUANT) which is to be passed up to a
governing sentence node, When the typeflag is not one of
the three special cases listed above, the semantic
interpreter called the function RULES with the arguments
PAND TYPEFLAG to determine the list of semantic rules to
use for the interpretation, and calls MATCHER to perform
the matching and return the SEMLIST WHICH IS TO BE THE
VALUE, If ¢there is no semantic interpretation, then
DEFAULTSEM may supply a default interpretation (currently
only in the case of the typeflag RRULES), but if not,
then INTERP either return NYL or goeS into a break
depending on the setting of the flag HELP,

(ISOTOPE X)

C -4

Page 41

ISOTOPE tests whether X is an 1sotope of some
element, If so, it returns the element, otherwise, NIL,

(KEYPHRASE TREELIST)

KEYPHRASE returns a list of the significant terminal
nodes of TRERLIST, It 4ignores determiners, auxiliary
verbs, tenses, number and nhon-restrictive modifiers,

(LEAFMEMB X LIST)

LEAFMEMB is a function for determining if any of the
"Jjeaves" of the list structure X are members of the 1list
LIST,

(LINEP NODE)

LINEP is a predicate which checks whether NODE has
the form (N LINE n), where n is an integer,

{MARKERS WRD)

MARKERS returns the 1list of semantic markers
characteristic of WRD, If WRD is a sample (e.qg.
S19@¢3), MARKERS returns (SAMPLE), If WRD is a document
(e.9. D70-221), MARKFRS returns (REFERENCE), Otherwise,
it gets the semantic markers off the property list of
WRD,

(MATCHER RULELIST P MODE)

MATCHER is the function which matcnes semantic rules
against nodes in the tree, RULELIST is the list of rules
to he matched, P is the node to be matcned against, and
MODE is a flag which indicates what to do with multiple
matches, 1If MODE is AND then multiple matches are ANDed
together; if it is OR, then they are OR'ed; if it is
SPLIT, then they are split 1into distinct (semantically
ambiguous) interpretations, and 4f it is FAIL, then
multiple matches cause ah error, MATCHER accumulates a
1ist SEMLIST of possible interpretatlons (5-Q pairs),
calling the function MATCHGROUP for each (non-null)
element of RULELIST, NIL's in RULELIST serve as
“harriers” which terminate the testing of rules 1if a
matching interpretation has already been found in the
list, but allow the testing to continue if there have
been no matches yet., MATCHER calls the user help
function NO-MATCHES if none of the rules on RULELIST
match and the flag USERFLAG is set to T.

(MATCHGROUP RGROUP)

Page 42

The elements of the list RYULELIST in MATCHER may be
either single semantic Trules or "groups" OF SEMANTIC
RULES WHICH ARE GROUPED TOGETHER WITH A MODE OPERATOR
WHICH SPECIFIES HOW SIMUL TANEOUS MATCHES OF DIFFERENT
RULES ARE TO BE HANDLES WITHIN THAT GROUP, MATCHGROUP is
the function vhich handles the matching of such a group.
If RGROUP is an atom, then it is a rule to be matched;
otherwise it is a group Whose first element (like MODE)
specifies that simultaneously matching rules are to be
SPLIT into different interpretations, AND'ed, OR'ed, or
cause FAILure, The first element of the RGROUP is saved
on CONJ, and all of the rules in the group are tried,
The WHILE expression elaminates the results of
non-matching rules, and if there are not more than one,
then the result of the matching rule 1S returned, In
general, each rule in the group mayY havVe returned several
distinct interpretations, and the function COMBINATIONS
takes all combinations Of these., The function SEMCONJ
performs the task of combining these interpretations with
the operator CONJ,

(MEANING? NPNODE)

MEANING? is a predicate which returns T if the noun
phrase NPNODE has been interpreted and the flag USERFLAG
is T.

(MEM N MARKER)

MEM is used in the Jeft hand side of semantic rules
to check whether a numbered node in a tree fragment
belongs in one of the SemaNtic classes in MARKER, MARKER
is a list of semantic markers, The node may belong to a
semantic class for one of Several reasons:

1« the head of the node has the Same name as one of
the markers, E.g. ROCK belengs to the Semantic class
ROCK,

2. the head of the node has on 1ts property 1list
one of the semantic markers in MARKER,

3, for a vartitive construction, e,g, "Which of
the type/A samples” onhe of the above is true of the head
of the prepositional phrase,

4, 1f the head of the node is a pronoun, one of the
above is true of its antecedant,

(NEWCLASS AVAR)

Both NEWCLASS and NEWPX are used in interpreting the
anaphoric pronoun "one", a8 int
"Which breccias contain aluminum?"
"Which ones contain krypton?" "Ones", in this
example, refers to “breccias", not to "breccias which
contain aluminum®*, After ¢the interpreter finds the

Page 43

antecedant of "ones" (AVAR), NEWCLASS returns the class
of AVAR, modified to refer to the current variable QVAR,
The <class of AVAR is gotten from its INTENSION property,
NEWPX returns the class resStrictions on the node, those
restrictions on AVAR not made by the verb phrase, 1In the
above case, NEWPX would not f{nd any such restrictions,
If the first request were

"Which breccias that are over u4@Pd million years
old contain aluminum?” NEWPX would return the
restrictions associated with the phrase “that are over
Lg% million yvears old".

(NEWFRAG NAME FRAG)

NEWFRAG is used to update the list of tree fragments
TREEFRAGS, It sets NAME <¢o0o FRAG and then adds it to
TREEFRAGS, For example,

(NEWFRAG S,OBJ.NPR (S ((VP ((NP ((NPR NIL 1))))))).

(NEWPX AVAR)
See NEWCLASS,
(NEWRULE ARGS)

NEWRULE adds new Semaltic rules to the system and
indexes them properly. (CaR ARGS) is the name of the
rule and (CDR ARGS) is its value,

{NO-MATCHES)

NC-MATCHES is called by MATCHER 1if nonee of the
rules which might be used to interpret the current node
match it, NO-MATCHES gives ¢the user the choice ot
quitting or breaking, If ne breaks, ne can fiddle with
the semantic rules to See ¥Why non matched, then reset the
variable RULELIST, Upon nis return from the break,
MATCHER will be re~run on the current node and the new
set of rules in RULELIST, The MATCHER -~ NO-MATCHES cycle
cah be repeated hy the user indefinitely many times,

(NXTVAR)

NXTVAR 1is the function which gets the next available
variable name for wuSe in the quantifiers during the
semantic interpretation, It uses variables «cyclically
from a list called VARIABLES,

{2DDP N)

ODDP is a predicate Which test if N 1is an odd
integer,

Page U4

(ORMATCH TEMPLIST)

ORMATCH is a routine for matching OR'ed templates in
RMATCH, That is, when in place of a single template in a
semantic rule, there 18 an OR of several templatas, then
ORMATCH is called to perform the matching of all of them,
It also provides for a standard DEFAULT interpretation as
the 1last component of an OR, It will take the default
interpretation if and only if there are no other matching
templates in the OR,

(PRED SEMFORM)

PRED is one of three functions (PRED, QUANT, and
SSUNIONF) which are used {in the right-hand sides of
semantic rules to indicate wvhat is to happen to
quantifiers,

QUANT indicates that the right-hand side 1is a
quantifier that is to Dbe passed up to a higher
constituent, with <the sSeMantic 1nterpretation of the
current node being the variable assigned ¢to that
quantifier,

PRED 1indicates that the right-hand side 1is a
predicate which 1is to "grab®" any quantifiers passed up by
constituents -- that is, any such quanthfiers will be
treated as quantifying the expression SEMFORM which is
the argument to PRED,

SSUNIONF indicates that the right-hand side is a
successor function which is to "grab" sSome quantifiers,
but wrap others tightly around itself, The
interpretation of the cuUrrent¢ node 1is then one big
successor function over the sets given bY the quantifiers
and the original successor function, SSUNIONF is used to
distinguish the scope of "each" which 1is usually a
maximum, from those of "every" and "all" which generally
follow left to right order. PFor example, the right-hand
side of N:ANALYSIS is (SSUNIONF (DATALINE (WHQFILE (# 3 2
SSET))(# 3 2 SSET)(®¥ 4 2)Y(# 5 2 SSET))), The
interpretation of the Trequest "Howmany analyses of
Krypton are ther for all samples?" is

(FOR THE X9 / (SEQL (NUMBER %18 / (SSUNION X8 / (SEQ

SAMPLES) ¢ T ; (DATALINE (WHQFILE X8) X8 OVERALL KR)

¢ T)) : T ; (PRINTOUT X8)),

There is a sSingle ansver for the entire set of samples,
The interpretation of “"Howmany analyses of Krypton are
there for each sample?"” 1S howvever:

(FOR EVERY X8 / (SEQ SAMPLES) : T 3 (FOR THE X9 [/

(SEQL (NDMBER X100 / (DATALINE (WHQFILE X8) X8

OVERALL KR) : T)) ¢ T ;3 (PRINTOUT X9))),

There is one answer for each sample in the set, (The

Page 45

typeflag SSET indicates that if the node <can be
~ interpreted as a set, it should be, "All sample" can be
interpreted as a set, "Each sample” can not be,)

(QUANT SEMFORM)

QUANT is a function uSed in the right-hand side of
semantic rules to 1indicate that SEMFORM is to be
interpreted as a quantifier, (See PRED,)

(QUIT)

QUIT effects a quick return to TALKER from wherever
one is processing in the upper fork,

(REFLOC RHSFRAG RVECTOR)

REFLOC is a function used by SEMSUB in the semantic
interpreter to make up REFLISTS for a given right-hand
gside of a rule and a given vector of matches (RVECTOR).,
If RHSFRAG (a fragment of the right-hand side of the
rule) is a REP (i.e., an eXxpression which refers to the
semantic interpretation of some constituent of the node
being interpreted), then REFLOC returns the REFLIST for
that constituent, otherwise 1t sScans BRHSFRAG for
instances of REFts, The REFLIST wnich is returned
consists of the pointer (SUBP) to tne constituent in the
tree to which the REF refers (fer this particular match
specified by RVECTOR), the REF itself (RHSFRAG), and the
interpretation of the node SUBP using the typeflag
specified by the REF,

{REFP RHSFRAG)

REFP is a predicate which tests a fragment of a
right- hand side of a semantic rule to determine whether
it is a REF (i,e., whether it refers to a constituent of
the +tree being interpreted whose Semantic interpretation
is to be used as a part of the current interpretation).
This is true if the frag- Ment is edther a dotted pair of
integers, or a list beingging with the atom #,

(REFPTR RHSFRAG)

REFPTR is like REFP, except that 1t also returns a
pointer to the node in the tree to which the REF refers
(the matching pointer being obtained £from the current
RVECTORY,

(REFQUANTS REFVECTOR)

REFQUANTS is a function which gathers the
N quantifiers from all of the REFLIST's irn REFVECTOR into a

D.45

Page 46

single quantifier "collar"™ which is to be wrapped around
the expression which it governs, It assumes that the
REFLIST's on REPVECTOR have been sorted into the order in
which they are to occur, This sorting is accomplished by
the function SORTREPFS in a call from SEMSUB, REFQUANTS
also separates the type of quantifier arising from
“"each", from those arising from "every" and "all", It
does this so that "each™ will nave a maximum scope,
independent of its surface structure location, "Each"
will produce a quantifier of the form

(FOR EVERY X / ...)
wvhile the others will produce one of the form
(SSUNION X / .4a)e

(REPSUB REFVECTOR)

REFSUB is a function vhich takes the current value
of RHS (maintained by SEMSUB), substitutes the semantic
interpre- tations of its REF's, and evaluates the result
to obtain the semantic interpretation of the current
node, REPSUB1 actually performs the substitution, and
prior to the execution of ¢he substituted right-hand
side, REFPQUANTSis wused to construct the appropriate
quantifier “eollar", The eall to EVAL will result in
these quanti- fiers being "grabbed"” and wrapped around
the semantic 4interpretation of the current node if the
right-hand side of the rule (RHS) 18 embedded in a PRED;
if it is embedded in a QUANT, then the call to EVAL will
result in the quantifier being inserted 1nto the "hole"
of the collar (substituted for DLT) and the semantic
interpretation of the current node will be set to the
variable name associated witn the quantifier,

(REFSUB1 RHSFRAG REFVECTOR)

REFSUB1 performs the Substitutions in the RHS of a
semantic rule Dbefore it 1is evaluated by REFSUB, It
substitutes the current value of the variable (QVAR) for
occurrences of the atom "y wnen interpreting
restrictions omn the rande of gquantifi- cation in
interpreting noun phrases, and substitutes the semantic
interpretations for REF's,

(REFSUB2 RHSFRAG REFVECTOR)

REFSUB2 is used by REFSUB1l to walk across a sublist
of a RHS and spply REFSUB1l recursively,

(REFTYPE REF)

Page 47

REFTYPE is a function for extracting the reftype of
a REF -~ 1i,e. the typeflag that 1is to be used for
interpreting the node to wnich the REF refers, For
dotted pairs, the REFTYPE is NIL, while for REF's that
begin with #, the reftype is the element of ¢the list
which follows the numbers that denote the node to be
interpreted,

(RELTAG PLIST)

RELTAG is8 the function wused DYy the semantic
interpreter for Jlocating the relative pronoun of a
relative clausgse to be inter- preted and tagging that node
with the variable of quantification (QVAR) associated
with the noun phrase which the relative clause modifies,

(RMATCH RULE P MODE)

RMATCH is the basic semantic rule matching function,
It matches the single semantic rule RULE against the node
P with mode MODE, (unless MODE is reset by the first
element of the rule itself), It calls TEMPMATCH to match
each of the templates of the rule or ORMATCH to match
OR'ed groups of templates, and if a successful match is
found it calls SEMSUB for each possible way 1in which the
rule can match, If there are multiple matches, then 1it
combines them in the way indicated by MODE,

(RULES P TYPEFLAG MODE)
RULES is used by INTERP to furnish the list of rules

to use in interpreting the node P, according to TYPEFLAG,
TYPEFLAG specifies what kind of interpretation is

required, The following kinds of interpretation are
recognized by RULES:

Te ALL - for partitive conmstructions determined DY
“all",

2. SET, SSET?, SSET - for nodes to Dbe 1interpreted
as sets,

3, AVERAGE, MAXIMMM, MINIMUM, NUMBER, OLDEST - for
partitive constructions headed by one of these words,

4., REFS? .~ for nodes to be interpreted as requests

or tovnics,

5, REFS - for nodes to be interpreted as topics, if
possible,

6, S -~ for sentence nodes,

7. TOPIC - for nodes to be interpreted as topics.

8, NP - for interpreting the determiner structure
on noun phrases,

9, NRULES - for interpreting the <class of noun
phrases.

1@, RRULES - for interpreting the restrictions on
noun phrases,

Page 48

11, SBRULES - for interpreting the main verp of a
sentence, RULES sets the MODE of i1nterpretation which is
then used by RMATCH, RULES calls DRULEF for the list of
DRULES to use in interpreting the determiner structure on
a noun phrase,

(SAMPLEP X)

SAMPLEP is a predicate which tests 1if X has the form
of a sample according to LSNLIS conventions, that is, X
is of the form Syyyvy,

(SCOPEFINDER FORM CONTEXT)

SCOPEFINDER makes intension and scopevars entries on
the property lists of variables in quantifiers,

(SCOPEVARS X)

SCOPEVARS accumulates the closure of the scopevars
of a variable,

(SEMCONJ CONJ SEMLIST)

SEMCONJ is the function whicn combines multiple
Semantic interpretations with the cenjunction CcoONJ, It
conjoins the SEM's of the {nterpretations under the
conijunction CONJ, and produces a quantitier which is the
nexting of all of the quantifiers wnich are associated
with the individual interpretations,

(SEMIANAPHOR ANAPHOR)

SEMIANAPHOR i85 used to resolve one type of ©partial
anaphora; a pronoun modified by a prepositional phrase,
For example, "Give me anal¥ses for krypton in breccias."
"Give me those for magnesium” The antecedant of "those
for magnesium”™ is "analyses for magnhesium in Dbreccias".
SEMIANAPHOR finds the node dominating "“analyses for
krypton in breccias" as the partial antecedant of
"those", rerlaces "for krypton" with "for magnesium", and
calls for the reinterpre- tation of the nev node,

(SEMNET N1 N2)

SEMNET test whether N1 and N2 are semantically
similar, e.qg,. they share gsemantjc markers or they are
both samples or documents, SEMNET, at present, is only a
bare attempt at doing the sort of thinags that could bhe
done with a semantic network,

(SEMSUB RHS RVECTOR)

Page 49

SEMSUB is the function which substitutes semantic
inter- pretations for their REF's :n the right<-hand sides
of semantic rules., It is the major dispatcher among the
functions REFLOC, SORTREFS, and REFSUB,

(SORTREFS REFLISTS P)

SORTREFS 4is the function which sorts REFLISTS into
the order in which the quantifiers associated with the
REF's are to be incorporated into the interpretation --
namely in order of their left-to-rignt position in the
structure P, This 1is accomplished by the function
SORTREFS1 which walks the tree P and adds REF's to the
list in the order in which it sees thenm,

(SORTREFS1 REFLISTS P)
See SORTREFS,
{SPROC P)

SPROC is called on the output of the Parser, P, It
clears TAGLIST before beginning and returns a list of
possible semantic interpretations of P, SPROC also calls
for the reordering of the antecedant list ANTECEDANTS
following the interpretation of P,

(SSUNIONF SEMFORM)

SSUNIONF is a function used in the right=hand side
of semantic rules to indicate that SEMFORM 1s a successor
function, (See PRED,)

(SUPERLATIVE N)

SUPERLATIVE tests whether the head of the node
numbered N is a superlative adjective, A superlative
adjective with a definite determiner is parsed as a noun,
while its associated surface structure noun 1is made the
head of a dependant partitive construction, For example,
“the oldest sample” is parsed as if it were "the oldest
of the samples", MEM cal)ls SUPERLATIVE on a node to See
whether its semantic properties should be gotten off the
head noun or the head of a partitive construction,

(SYNONYMS? HEAD TYPEFLAG)

SYNONYMS? is a help function called by RULES when it
cannot find any semantic rules to use in interpreting the
head noun or head verb of a node, It tells the user it
cannot understand the word and asks if it is a synonym of
one of the words it knows. If it 1s, the system will get
the semantic rules off the synonym and continue,

Page 5@

(TAG P TAGNAME VALUE)

TAG is the function which places tags on the
TAGLIST, It associates with the node P the property
TAGNAME with the value VALUE,

(TEMPMATCH TEMPLATE P)

TEMPMATCH is the semantic interpretation function
wvhich matches templates with nodes of the tree (it is
called by RMATCH and ORMATCH), It calls the functions
TMATCH to perform the tree matching of the tree fragment
with the node P, and CCHECK to check the semantic
conditions of the template for any resulting tree
matches, It also provides the results of a simulated
match in the case of a DEFAULT template,

(TERM TREELIST)

TERM is a function which returns the list of
"leaveS" or "terminal nodes® of a list of tree structure
nodes (TREELIST). It does 80 by walking ¢the ¢tree
structure and gathering up the “leaves",

(TMATCH PLIST FLIST)

TMATCH is the function which pertorms the sSubtree
matching for the semantic interpreter (called by
TEMPMATCH). PLIST is a list of nodes on the tree Wwhich
are to be matched against the fragment nodes (from the
semantic rules) in the list FLIST, It returns a list of
all vpossible matches--each match being represented by a
vector (ALIST) of correspondences between numbered nodes
in the tree fragment and the nodeS in the tree being
interpreted.

(USED? ADJ)

USED? is a predicate which tests whether the
adJjective ADJ has been tagged by MATCHER as being used in
the interpretation of some node,

Page 51

III. RETRIEVAL FUNCTIONS

(ABOUT DOCUMENT TOPIC)

ABOUT is a predicate for a DOCUMENT being indexed
under one or more of the keyphrases 1in TOPIC, For
example, the interpretation

(POR EVERY X7 / DOCUMENT § (ABOUT X7 (OR (
FERROUS IRON)
(AND (FERROUS)(IRON)))) ,; (PRINTOUT X7))
retrieves all documents which have been 1indexed under
"FERROUS IRON" or under both “FERROUS™ and "IRON",

(AGE ARGS)

AGE can take two or ¢three arguments, a sample
number, a radiometric clock, and a restart pointer, If
the clock is specified, AGE returns the age of the sample
as may have been measured by that radiometric clock.
Otherwise, AGE returns the age of the Sample according to
each of the radiometric clocks in AGELTS, for which such
measurements have been made, AGE calls DATALINE to £find
all the necessary age analyses, For example, (AGE (NPR+*
X3 / (QUOTE S172@71))(0OUOTE «PB2@27) INDEX) will return the
first age analysis of sample 19071 by lead isotope dating
if INDEX is NIL, subsequent analyses othervise,

(ANALYSES FN GAZ)

ANALYSES is a succeSsor function like DATRLINE,
vhich returns, one by one, all the chemical analyses in
all the files on FILEDIRECTORY, FN and GAZ are both
restart pointers, the first to the remaining analyses 1in
the current analysis file, tne second to the remaining
files in FILEDIRECTNRY, It is not currently used, but
could be, instead of DATALINE, in situations where it
would be more efficient, For example, in response to
"Give me all the analyses in your files."”

(AROUNDVAL Q1 02)

AROUNDVAL is a predicate which tests vhether Q1 1is
within an engineer's approximation of Q2. That is, .9sQ2
< Q1 < 1,1*Q2, 01 and 02 may be scalar quantities,
number-unit pairs or analyses, In the latter case, the
value of the analysis is fetched from the appropriate
file.

(ASSOCNEXT LISTV NTRY)

Page 52

ASSOCNEXT returns the tail of LISTV whose CAAR is
equal to NTRY, LISTY is a list of lists, ASSOCNEXT
differs from ASSOC in returning the whole tail and not
just the head of the tail. For example,

(ASSOCNEXT (QUOTE CPX)(QUOTE ((OVERALL , 2877)(CPX .,

290@) (PLAG ,

2958) (*»» | 3017))))

((CPX . 290@0)(PLAG , 2958)(*** , 30217))
ASSOCNEXT is called by DATALINE,

(ARVERAGE =*X» / CLASS : PX)

AVERAGE calculates the numerical average of the
members of CLASS which Meet the requirements stated in
PX., AVERAGE is used to compute average agesS, average
concentrations and average raties, For example, "What is
the average potassium / rubidium ratio in low-alkali
rocks?" is interpreted as

(FOR THE X1 / (SEQL (AVERAGE X2 / (SSUNION X3 / (SEQ

TYPEAS) :

T ; (RATIO (QUOTE K22) (QUOTE RB) X3 (QUOTE
OVERALL)Y)Y) : T))

:T ¢ (PRINTOUT X1)),

(AVGSTEP X1)

AVGSTEP is used by AVERAGE to <compute average
analyses (concentrations), It fetches the value of the
current analysis X1, d0es any unit conversion necessary,
and increments the accumulator with the value,

(BOOLGET X)

Wwhen the quantifier function FOR 1s quantifying over
a set of documents (i.e. the CLASS in "DOCUMENT"), it
calls the function BOOLGET with X set to the restriction
on the range of qualification (i.e, the PX term in the
quantification), BOOLGET Searches tne expression X for
all instances of the predicate ABQUT (which represents
the prediction of a document being about a topic) and
gathers up the corresponding Boolean <combination of
topics, This is used as an argument to BOOLRET (after
being converted to conjuhctive normal form) and is used
to enumerate the appropriate set of documents by
performing the Boolean oOperationsS on the inverted file
lists for the keyphrases of the topics,

(BOOLREQ CNF)

BOOLREQ converts a normal conjunctive normal form
Boolean expression CNF into a modified form suitable for
BOOLRET, by sorting negations to tne end and raising
negations if necessary so that they are alwayYs components

D.52

Page 53

of an AND and not of an OR., The latter 1is done in order
to provide a Boolean request which can always be done by
intersecting inverted files and never requires
constructing the complement of an inverted file,
BOOLREQl performs the bulk of this operation, NEGSORT
sorts the NOT's to the ends of clauses, and converts such
clauses to 4instances of the operator SDIFF (Which
represents the operation of taking the Set difference
between two Boolean expressions),

"BOOLRET BOOLEXP)

BOOLRET is the function which performs the Boolean
operations indicated in BOOLEXP on the inverted file
lists of documents associated with the keY phrases 1in
BOOLEXP, It returns a 1list of all documents which
satisfy the Boolean expression,

(BUILDCA CA FLDNS)

BUILDCA is used when building tne lower fork to set
up the <codearrays and do the appropriate coding, FLDNS
is a list of field names in the same order as their
corresponding code array in CA, Each member of FLDNS is
bound to a list of its field values to be coded,

(CHANGELINE ARGS)

CHANGELINE changes a single field on each line
meeting the specifications given :'n ARGS to a value also
gpecified in ARGS. The format of ARGS 15 «<fieldname>
<new-value> <file> «<old-Spec> =», wnere file meeting the
specifications in <old~-spec>=, The order of
specifications must match the order of fields in a file
record, For example, (CHANGELINE ELT AL2@3 APOLLOll
S1@@84 OVERALL AL213) will <change the value of every
AL2P3 analysis of sigdsu OVERALLwhich has been
incorrectly specified as an Al213 analysis, To change
the value of more than one field on a single 1line, one
should use EDITLINE instead,

(CHANGE ILINE FN FPIELD VALUE)

CHANGELLINE is8 called by CHANGELINE after CHANGELINE
has found a line that meets the given specifications, If
the file is not sorted on FIELD, CHANGLLINE changes the
current value of FIELD to VALUE, Otherwise, CHANGELLINE
deletes the line and inserts the corrected 1line at the
end of the corresponding Patch file, The patch file has
the same name as the main file, with the extension PATCH,
e.q, APNLLO1l and APOLLOll1,PATCH, The argument FN is
(FILE , LINE-NUMBER),

Page 54

(CLEARMAP)

CLEARMAP is called by RETRIEVER to remap file pages
and reset the GAZETTEER after a request has been
serviced, 1In case the wuSer inadvertently leaves the
lower fork via an interrupt, he can type EXECUTE() to run
CLEARMAP,

(CNF BOOLESP)

CNF 1is the function which converts Boolean
expressions to conjunctive normal form, The result of
CNF is a list of lists of Keyphrases or their negations.
Each element of the top level list s a disjunction (9R)
of its contained phrases, While the top level list 4is a
conjunction (AND) of these disjunctions, although the
AND's and OR's are implicit in the list structure and do
not explicitly appear, BOOLREQ uses the output of CNF to
construct its Boolean request,

CODE VAL ARY)

CCDE replaces the CODE and ENCODE functions of the
previous LSNLIS system, CODE examines the CODES property
on VAL for the occurrance of ARY, a code arrayY in which
VAL has presumably been coded,

(COMBINATIONS LIST)

computes the cross product of a list of lists, For
example, COMBINATIONS (((A B C))) = (B) (C)) COMBINATIONS
(C(A B)(C D))) = ((A CY(B C)(A D)(B D)) COMBINATIONS (((A
BY(C)Y(D E))) = ((A C D)(B C D)(A C E)(A C E))

(COMPLEMENT LITERAL)

This function returns the complement of the literal
key-phrase LITERAL, It LITERAL 1is negated, then
COMPLEMENT drops the negationy; otnerwise, i1t adds a
negation, The function is used in BOOLREQL,

(CONTAIN #Xw »Y* #Z%)

CCNTAIN tests whether sample *X=* contains the phrase
or element Y+ (if *Z# is NIL) or vwhether it contains
element *Y* in phase #*2Z+ (if *«Z+ in non-NIL), If only an
element is specified, CONTAIN checks the ELTS property on
sX* for »Yx, If »Ys i5 a Phase, CONTAIN checks the index
on =X» since files are indexed on sample-phaSe pairs, 1If
both »Y* and *Zs are given, CONTAIN 18Ssues a call ¢to
DATALINE,

Page

(CONTAIN' SAMPLE ELPH ARGl ARG2)

55

CONTAIN' is used to answer "how much" questions and

to compare the average concentration of some mineral

or

element in a sample against some given amount, Like

CONTAIN, CONTAIN' may be called with a mineral or
element or an element within some phase of SAMPLE

arguments, If a phase is specified, CONTAIN' takes fo
argumentsjy otherwise, it takes three, The last argume
to CONTAIN' is either (HOW), for a "how much" questio

an
as
ur
nt
L)

or a test (E.G,(MORETHAN 5 PPM), (ATLEAST 3,5 PCT)), In
the first case, CONTAIN! returns the average
concentration, in the second, T or NIL, depending on

vhether the average conCentration passes or fails the

test, PFor example, "Which rocks have greater than 5@ P
Nickel?" is interpreted as:
(FOR EVERY X3 / (SEQ VOLCANICS) : (CONTAIN' X3
(OUOTE NIO)
(GREATERTHAN 53 PPM)) ;3 (PRINTOUT X3))
(CONVERT Q1,Ul U2)
is a neat call to CONVERTU,
(CONVERTN N Ul U2)
sets up a call to CONVERTU on (N , U1) and U2,
(CONVERTU NUP UNIT DUMMY1 DUMMY2)

CCNVERTU converts the number-unit pair NUP to ¢t

BPM

he

unit specified 4in UNIT, DUMMY1l and DUMMY2 are dummy

variables, CONVERTU is called by CONVERT, CONVERTN a
UQUOTIENT.,

{DATALINE ARGS)

ARGS is a 1list with the format <file><fldspec

nd

>

<index>, DATALINE is a successor function which searches

a file for lines which meet the specifications given

fldspec =, Any number of fields an a file re may
specified, but they must follow the order of the fiel
in a file record and be non-NIL, The tormat of index
the restart pointer, is ((<file> , «<«line#>)} , filet
)« DATALINE does a binary search on sorted fields, and
linear search on non-sorted fields, It takes advanta
of whatever indeximng has been done on the file, record
on the property 1list of the pr:mary sort key. F
example, (DATALINE APOLLOL]l S1@@56 OVERALL ALZ203 INDEX
if INDEX is NIL, will return a pointer to the fir
OVERALL analysis of samples 10@56 for AL283, in this ca
((APOLLOll . 7763) 132u48), If DATALINE 1s call
again for the next line meeting this description, it wi

in
be
ds

L
op

a
ge
ed
or
e
st
se
ed
11

Page 56

be called with INDEX set to ((APOLLOll , 7763) R
13248), the answer returned above,

(DECODENUM ARRAY CODE)

DECODENUM returns the decoded value of CCDE
according to the <code array ARRAY, For example,
DECODENUM (MARR11l 27) returns SILYICA,

(DELETELINE ARGS)

ARGS is a 1ist with the format tile fldspec =,
DELETELINE will delete all lines in file which meet the
description given in fldspec *«, For example, (DELETELINE
APPOLLOll S1Q22@3 CPXY FEO) wWill delete all CPX analyses of
sample 180403 for FE0, 1f there are any, in the APOLLOll
file,

(DELETELILINE FN)

FN is the dotted pair (<file> , <line#>),
DELETEILINE 4inserts a deletion indicator, 1849, in the
primary sort field of the 1line indicated in FN,
DELETEILINE is called by CHANGElLINE, DELETELINE and
EDITLINE,

(DO X)

calls for the evaluatien of X, Do 1s THE
INTERPRETER"S RESPONSE TO AN IMPERATIVE QUESTION,

(DOCP X)

DCCP is a predicate for X being a document
(citation) number, i.e. having the form Dnn-nnn, where n
is any integer,

(DOCUMENT INDEX)

DOCUMENT is a successor function which, ohe by one,
returns the document numbers known to the system,

(EDITLINE FILE N)

EDITLINE allows the User to make anY number of
changes to line N of file FILE, If the user has changed
the value of a field on which tne file 1is sorted,
EDITLINE makes a new entry corresponding to the changed
line in the appropriate patch file, If an altered field
is not a sort key, then the new value Just replaces the
0ld one in the original file,

Page 57

(ELT:LINE FN)

FN is the dotted pair (<file> <lineg>),
ELT:LINE computes the entry in MAPARRAY corresponding to
the given file~line number pair, ELTILINE also sets the
value of FORMAT, the flle format description, for its
calling functions FETCH, FETCHLINE, STORELINE and
STOREVAL,

(EXECUTE FORM)

EXECUTE is the function which performs the execution
of query language expressions, It may be either of two
distinct functions LOCEX or REMEX which perform the
execution in the same (local) fork or in f a remote fork,
respectively, 1In either case, EXECUTE provides for the
opening of a file HITFILE in which the answer is to be
recorded and the maintenance of a counter COUNTwhich is
incremented by the functions which vwrite information onto
HITFILE, When the execution is8 completed, EXECUTE closes
HITFILE, and 4if COUNT is not greater than 5 copies the
HITFILE to the teletype aS the answer, If COUNT 1is
greater than 5, then EXECUTE types a message giving the
number of hits and asking the user wnether he wants to
see them onr the TELETYPE, (Tf not, he has the option ot
listing HITFILE offline or saving 3ts value for later
listing,)

In the case of REMEX, which 18 the wayY that the
LSNLIS system is currently running, the above procedure

is additionally complicated by the fact that the
retrieval component in which the Qquery language
expression is executed resides in a complete separate
fork of the TENEX system, In this case, EXECUTEw writes
the gquery language expreSsion into a buffer €ile QBUF,
and calls the LISP function RUNFORK ¢to wak up the
retrieval fork, The Tretrieval fork then reads the
expression from QBUF and executes it as discussed above,
with the answers being written onto HITFILE, When the
execution is completed, the retrieval fork writes the
value of COUNT into another file buffer ABUF, and returns
control to the language processing fork, At this point,
EXECUTE regains control, reads the value of COUNT FRON
ABUF, and proceeds to type the answers or notify the user
of the number of hits as above,

(EXIST X)

EXIST is a predicate Which is wuniversally +true ot
every argument,

{EXPANDARRAY ARNAME)

D.,57

Page 58

EXPANDARRAY expands a code array 1f it runs out of
space by Trecopying it into a larger array, EXPANDARRAY
is called by CODE,

(FETCH FN FIELD)

FETCH returns the value in the field FIELD for a
given file- line number pair PN, FETCH saves the value
of FN in the global variable OLDFN, so that if the value
of FN doesn't change on subsequent calls, FETCH will not
have to call BLT:LINE to compute a new Dpointer into
MAPARRAY, The value of the pointer 1s saved in OLDELT,
and the value of the file format in QLDFORMAT,

(FETCHLINE FN)

FETCHLINE returns a list of the binary words making
up the record for the given file-line number pair FN,
FETCHLINE 1s used by LINEORDP to save time, since
alphanumeric order 1is Mmatched 4in the APOLLOll and
APOLLOll1,PATCH files bY binary order,

(FETCHVAL FN FIELD)

FETCHVAL returns the value in FIELD for the
file-line number pair FN, Yf ¢tne value is encoded,
FETCHVAL calls CODE to decode it,

(FLTBOX LOC)

FLTBOX returns the boXed value of the quantity 1in
memory location LOC, PLTBOX is called by FETCH when the
field type of the field to be retrieved 1s FLT,

(FOR ARGS)

FOR performs quantification in the retrieval
component, FOR has been made an NLAMBDA so that the user
can specify a new quantifier {n case the one produced by
the interpretive component {8 incorrect, This will
happen often when there are many values of *Xs for which
a statement is true and the user has requested “"the"
value, meaning the one,

(GETDOCS PHRASE)
GETDOCS returns the inverted file indexed on PHRASE
from the =external file PHRASETABLE, It is called by
BOOLRET,

(GETPAGE FILE PAGE)

Page 59

GETPAGE determines whether page PAGE of file FILE
has been mapped onto MAPARRAY, If it has not, GETPAGE
calls PAGEMAP to do the maPping, The Trecord of which
pages of which files are currentlyY mapped onto MAPARRAY
is kept on the 1ist GAZETTEER,

(GREATER Q1 Q2)

GREATER is a predicate which tests wvhether Q1 |is
greater than Q2. 01l and Q2 may be scalar quantities,
number-unit pairs, or analyses, If the latter, the value
of the analysis is fetched from the appropriate file,

(INDEXF FILE)

INDEXF indexes all sample-phase combinations in a
coded chemical analysis file FILE, printing the size of
each sample-phase block for Jlater declision on deeper
indexing, The index is Sectioned off by sample number,
and each section is maintained on the property 1list of
the corresponding sample, under the property APOLLOll,

(INTERSECT LIST)

takes the intersection of all the 1lists on LIST,
Por example, INTERSECT (((A C D F){(C F) (B F H C))) = (C
F)

(LESSVAL Q1 Q2)

LESSVAL is a predicate which tests whether Q1 is
less than Q2, In all other ways, it resembles GREATER,

(LINEORDP FN1 FN2)

Both FN1 and PN2 are of the form (<file> , <line#>
). LINEORDP returns T 1if the first line precedes the
second in alphanumeric order. This version of LINEORDP
takes advantage of the fact that a chemical analysis file
is sorted on all fields and only fields in the first two
words of each record, Given this, alphanumeric order
corresponds te binary order on the firat two words of the
record, Thus, LINEORDP <can use LESSP on the first two
words of the record, rather than consecutive,
time-consuming checks on the sorted fields,

(LINE#OF X)

LINE#0OF is intended to return the line number of X,
In the current system, it is assumed that X is a line
number, and LINE OF returns X,

D.59

Page 60

(LOADLOW LOADFILES)

LOADLOW is used when building tne lower fork to load
in all the necessary functions and global variables, It
also gsets up the arraY and values needed for page
mapping,

(LOCEX FORM)

LOCEX would be the executive program for executing
semantic interpretations in undivided retrieval system.
See EXECUTE for further details,

'MATCHLINES ARGS)

ARGS has the formac <FILE><LINE ><FLDSPEC>=,
FLDSPEC maY have a value or be NIL, but there must be a
FLDSPEC for each field in the file record. MATCHLINES
tests whether the given line of tne given file matches
the field specifications., MATCHLINES returns WORTHLESS
if +the given 1line would follow a line with these speci-
fications in the file, ALMOST {f the given line would
proceed it, and 0K if the lines matcnh, A match occurs if
the specification is NIL or if the value of the
specification is the saMe as the value of the field on
the given line,

(MAXIMUM X s SAMPLESET : PX)

MAXIMUM calculates the maximum wvalue over those
members of SAMPLESET which meet the conditions sgpecified
in PX,

(MEMBER+» INDIV CLASS)

MEMBER* tests whether INDIV i8 a memper of CLASS,
It differs from MEMBER in that CLASS may be a variable
bound to an atom whoSe value i{s a list, or a list itself,
Otherwise, MEMBER* returns an error message, MEMBERs
calls MEMBER,

(MINREAD INPUTFILE® OUTPUTFILE)

MINREAD is a function to create a binaryY chemical
analysis file for the new data base from a LISpP written
file for the old one, OUTPUTFILE must have been opened
for 1I/0 prior to the call to MINREAD,

(NEGSORT CLAUSE)
NEGSORT is a function used in the Boolean request

generation to move negated pnrases to the end and convert
them to calls to SDIFF, the function which indicates the

D.60

Page 61

set difference between two Boolean descriptions, See
BOOLREQ for more details,

(NEWLINE ARGS)

ARGS has the format <file» <fldspec> «, NEWLINE
sets up successive calls to STOREVAL to store the record
gspecified in fldspec » in the next empty record of file .
NEWLINE updates the proPerty TOP on file to one higher
than its previous value, and this value is returned by
NEWLINE, For example,

(NEWLINE APOLLOll.PATCH S10222 OVERALL ALZ293 D7P-194

0 PCT 7.1)

6
The order of <fildspec> =* must folloV¥ the order of fields
in a record, NEWLINE is called by EDITLINE and MINREAD,
NEWLINE should bhe used otherwi{se only on unsorted files,

(NEXNUM INDEX)

NEXNUM finds the leftmost terminal element which is
alsoc a number in ¢the tree INDEX, NEXNUM is used by
DATALINE in searching the file index on a sample for the
start of the next sample-phase block,

(NPR ARGS)

NPS is a variant of QUOTE, If ARGS have a special
significance in the system, indicating a line number, a
citation, a specimen, a phase, or a constituent, NPR
returns the standard form, Otherwise, NPR acts like
QUOTE, PFor example,

(NPR SAMPLE 12023)

512903

(NPR LINE NUMBER 12)

12

{NPR BERYLLIUM)

BE

(NPR» X% s CLASS)

NPR*» sets the value of #»X+ to tne value of CLASS,
It is wused to associate a scope variable with a proper
noun for referencing purposSes, It s produced by the
interpretive component for all ©proper nouns, For
example, (NPRs X7 / (QUOTE S51m@56)).,

(NUMBER ARGS)

counts the number of times the form ARGS IS TRUE.
NUMBER returns a one-place list containing the count, and
is used to answer "how manyY" quest:ons,

Page 62

(OLDEST »X* / SAMPLESET : PX)

OLDEST calculates the average age of each sample in
SAMPLESET which meets the conditjons specified in PX, and
returns that sample which has the greatest average age,
OLDEST records 4its ansver {n the list DEFDESC, so that
the oldest member of SAMPLESET need only be calculated
once,

(OUTPUTLINE FN)

FN has the format (<file> , «<line#>), OUTPUTLINE
is 1in general printing function for file records which
gets the information about the record format and printing
format from the property list of the file name and prints
out the record accordingly, OUTPUTLINE is <called by
PRINTOUT and PRYNTFILE,

(PAGEMAP MEMPAGE FILE FILEPAGE)

PAGEMAP maps page FILEPAGE of FILE onto page MEMPAGE
in the lowver fork.

(PHRASEMATCH PHRASE PHILE POS)

PHRASEMATCH tests whether the inverted file indexed
on PHRASE starts at position POS of the file PHILE, or
would start earlier in the file or later, PHRASEMATCH is
called by GETDOCS to determine the next move in its
binary search,

(PRINTFILE FILE)

PRINTFILE takes the place of the functions POLD and
PNEW in the former LSNLIS system, to print, in readable
format, the binary files in the data base,

(PRINTLINE N)

The values to be printed by PRINTLINE are the values
in PRINTFIELDS, The values printed on the prior line by
PRINTLINE are stored jin OLDPRINTFLDS, The printing of a
field 1is suppressed if 4its value 1is the same as the
former value, wunless the field 1is a floating point
number, which always prints, N is the number of fields
to be printed, and is presSent to make PRINTLINE more
general, In the current system, all binary files have
the same number of fields and it corresponds to the
length of PRINTFIELDS.

(PRINTOUT =X=)

Page 63

PRINTOUT prints out the answers to requests made to
the retrieval component and increments the variable COUNT
maintained by RETRIEVER, PRINTOUT HAS SEVERAL OQPTIONS,
If #X* represents the result of a DATALINE computation,
PRINTOUT prints out the associated analysis, If =+x= is
within the scope of any other variables, PRINTOUT prints
out the values of those variables in addition, If eX»
has any additional information associated with 1it,
produced during the evaluation of the regquest, that
additional information iS printed out along with the
ansver, If #Xs {8 not a variable, PRINTOUT merely prints
out i¢s value,

(RATIO ELT1 ELT2 SN MIN POINT)

RATIO 1is a successor function which returns, one by
one, the raties it compuUtes of ELT1l to ELT2 in the MIN
phase of sample SN, POINT 1s the Trestart pointer,
Ratios are only computed between analyses With the same
reference - i,e. done by the same Set of authors,

(REF* FN REFR)

REF+ 1s a predicate which tests vhether the
reference associated with the analysis FN 1s equal to
REF, FN has the format (<file> , <line#>),

(REFILEPHRASES INFILE OUTFILE)

REFILEPHRASES converts the set of inverted files on
INFILE 4into one, OUTFILE, suitable for binary search,
Inverted files on the Same keyphrase are merged, and each
inverted file is bounded oh both ends by square bprackets,

(REMAP MEMPAGE)

REMAP remaps page MEMPRGE of the lovwer fork onto its
associated filepage,

(RETRIEVER)

RETRIEVER sets up the lower fork of the two fork
LSNLIS s¥stem, It exits to the Exec with HALTFN so that
the lower fork can be saved, When the lower fork is
called by REMEX, it is entered in RETRIEVER following the
call to (HALTFN),

(SAMPLEP X)

SAMPLEP is a predicate for X being a sample number -
a string beginning with *S® and followed bY a five-digit
number,

Page 64

(SCOPEFINDER FORM CONTEXT)

makes INTENSION and SCOPEVARS entries on the
property lists of the variables in quantifiers.
SCOPEFINDER is used in determining correct anaphoric
referents,

(SEQ *Lx» =Ia)

SEQ is a successor function wnich ehumerates the
members of a list, #I* {g its restart pointer, SEQ
returns (CDR (EVAL #Is+)) 4if »I* 38 non-NIL, Othervise,
SEQ returns (EVAL #»lL*), This value §is then used by SEQ'S
calling function as its resStart pointer, The variable
AGAINFLG prevents SEQ £rom restarting »L+* after +I+* is
NIL.

(SEQL *Ls» =I=s)

SEQL is8 equivalent ¢to (SEQ (LIST,..)), It 1is
produced in the semantic component for single.membered
sets,

(SETLIST =»X» / CLASS : PX; QX)

SETLIST returns a list of the members ot CLASS which
satisfy condition PX, if QX = T, Otherwise, SETLIST
returns QX applied to each of those members, SETLIST 1is
similar to SETOF; however, 4t returns a list of its
ansvwers, rather than each one in turn,

(SETOF «X=*= s CLASS : PX ; QX POINT)

SETOF is a successor function which returns the
membhers of the class CLASS which satisfy PX, after having
applied QX to them, POINT is the restart pointer,

(SORTNEW FILE)

SORTNEW does a bubble sort of the unsorted portion
of FILE into the sorted portion, The boundaries of the
unsorted portion are the values of SORTTOP and ToP, both
on the property 1list of FILE, SORTTOP is reset to TOP
after the file is sorted, SORTNEW is called bY DATALINE,

(SSUNION *X» / CLASS : PX ; QX INDEXO)

SSUNION is a successor function, For each member of
CLASS meeting the conditions {n PX, QX 1s evaluated, QX
is either T or another succCessor function, INDEXO 1is a
restart pointer for both CLASS and QX,.

Page 65

{STORELINE FILE LINE# LINE)

STORELINE inserts the binary record given in LINE on
line LINE of FILE, It is used by CHANGELLINE to save
time, instead of a series of STOREVALS, CHANGELLINE gets
the binary record with a call te FETCHLINE,

(SUNION ARGS)

SUNION is a successor functien which, one by one,
enumerates all the members of all the se¢ts listed in
ARGS,

(TABFORM X)

returns the standard form of X, a8 1t appears in the
mineral analysis data base,

{TRBFORM ORTHOPYROXENE)

OPX

(TAG* FN TAG)

TAG» is a predicate which test if the value of the
tag field of FN is equal ¢to TAG., FN has the form (
<file> ., «<line#>),

(TEST SENT)

calls for the evaluation of SENT, If SENT 1is
non-null, TEST types "YES", If null, TEST types "NO",
TEST is the function used to ansvel YeS-no gquestijions,

(UNADDPROP X Y 2Z)

UNADDPROP is the reverse of ADDPROP, It removes the
entry Z from the property Y on the atom X,

(UQUOTIENT NUPl NUP2)

UQUOTIENT returns the quotient of the tvwo
number-unit pairs, NUPl and NUP2, first performing any
unit conversion necessary.,

(WHQFILE SN)

WHQPILE returns the chemical analyYsis file on which
the analyses of sample SN are stored, For example,
(WHQFTLE (QUOTE S12917)) returns <WARNER>APOLLO11,

Appendix E,

THE ORGANIZATION OF THE DICTIONARY

The following description is intended to serve two purposes:
first, to provide a general picture of the dictionary, indicating
what types of information must be specified for lexical entries;
and second, to demonstrate the precise format in which this infor-

mation must be represented.

;'
I. An Overview

The dictionary entry for a given word is stored on its LISP
property list as a sequence of property-value pairs (see the appen-
dix for a formal specification of the syntax required in a defini-
tion. Usually the properties will be the names of lexical categories
(e.g. N, V, ADJ), indicating that the word can be a member of the
category, but three other properties are allowed: SUBSTITUTE,
COMPOUNDS, and FEATURES. SUBSTITUTE supplies a mechanism for map-
ping abbreviations and alternative spellings of a word into a single
form, which contains the full dictionary entry. If a word can be
the first word of an idiom or compound expression (e.g. "United" in
"United States"), then the property COMPOUNDS denotes the following
word in the compound and a standard form which will replace the
whole sequence when it is found in a string. Thus the pair
COMPOUNDS ((STATES UNITED-STATES)) on the property list of UNITED
would convert all occurrences of the sequence UNITED STATES into
the single word UNITED-STATES, which then must be entered separately
in the dictionary. The implementation of the lexical category
properties, SUBSTITUTE, and COMPOUNDS, all support the general
philosophy that the dictionary information for a number of related
items should he stored on only one standard form but should be

accessible by any of the items.

II. Lexical Categories

The lexical categories are the properties explicitly referenced
by the grammar and the parsing algorithm. When the grammar asks if
a word is in a particular lexical category, the dictionary look-up
routines provide a yes-no answer and, if yes, two kinds of informat-
ion: (1) the root form of the word, and (2) a set of inflectional
features. Thus if the grammar asks if BOOK is a noun, the answer
is "yes--with root BOOK and inflectional feature (NU SG)". For the
verb TALK the root would be TALK with inflectional features
(TNS PRESENT) and (PNCODE 3s5G).

The value of the lexical category property encodes the root
and feature information in several ways (see Section VI). The most
transparent notation is simply a parenthesized sequence (a list)
whose first element is the root and whose succeeding elements are
the features. If the word has a number of different interpretations
within a single category (e.g. SAW as a verb), the value of the cate-
gory property is a list of root-feature lists, one for each interpre-
tation. If the value of the property is an atom, (a character-
sequence instead of a list), then the root features are supplied by
default dictionary routines: If the value is "*", then the word it-
self, is taken as its own root and the set of features is. the empty
set. For any other atomic value, the root is still the word itself,
but a default set of features is provided, depending on the category
(e.g., nouns are markéd as singular by default).

Atomic values have another side-effect: they specify the
morphological paradigm of which the word is the root. Thus for
verbs, the atomic value S-ED indicates that the third-person
singular is formed by adding an s, the past tense and past parti-
ciple result by adding ED, and the present participle is formed
with ING. With the inflectional paradigm encoded in this way, only

the root forms of regular verbs, nouns, adjectives, and adverbs

must be entered in the dictionary. Definitions for inflected
forms are constructed as needed by removing suffixes to obtain
a potential root and making sure that the potential root is in
the dictionary and is marked to allow the removal of that suffix.
I1f so, the inflected form is defined as having that root and fea-

tures determined by the suffix in a regular way.

Having outlined the general structure of definitions, we can
now look at the lexical categories in some detail. We distinguish
two kinds of lexical categories, open and closed. Open categories
are large, potentially infinite classes of words (such as nouns and
verbs) which will never all be in the dictionary. These classes
are quite productive, with new members arising almost daily, as
technology progresses. The closed categories are finite, and, for
the most part small, and they are not growing. These categories

include prepositions, determiners, conjunctions, and modals.

A. Open Category Properties.

N = noun (man, airplane, city)

NPR = proper noun (John Smith, USAF)

\Y, = verb (walk, fly, see)

ADJ = adjective (tall, happy, green)

ADV = adverb (quickly, suddenly, certainly)

B. Closed Category Properties

CONJ = conjunction (and, or, but)

PREP = preposition (to, for, over)

PRO = pronoun (I, you, they)

DET = determiner (the, a, those)

ORD = .ordinal (first, second, last, final)
NEG = negative (not)

COMP = comparative (more, less, greater)
oP = operation (plus, times)

QWORD = question noun (who, what, why)
QDET = gquestion determiner (which, what)
MODAL = modal verb (should, would, can)

INTEGER= integer (one, two, three)

E.3

III. Open Categories

A, N - Noun

The property N indicates that the word can be interpreted
as a common noun. Lvery noun is mapped into its root form and
supplied with an inflectional feature for number. This feature is
encoded as follows:

(NU sG) if this is a singular form

(NU PL) if this is a plural form (e.g. OXLN)

(NU SG/PL) if this form is considered both singular and plural

(e.g. FISH, SHELP)

The property N should not have the value *; the feature (NU SG)
is supplied by default for other legal atomic values.

The atomic arguments specify how the plural, if any, 1s formed
The following atoms are recognized (the hyphens are required):
=S nouns with regqular S plurals (e.g. BOOK, BOOKS, IULE, MULES)
-ES nouns with regular ES or IES (if the root ended in Y)
plurals (e.g. CHURCH, CHURCHES, PONY, PONIES)
MASS mass and abstract nouns which have no plural (e.g. WATER,
HEALTH)
IRR nouns whose plural form is irregular (e.g. DATUM, OX)
(note that the plural form must have a separate dictionary

entry)

The definitions given for the following words illustrate these

conventions:

BOOK (N -S)

HEALTH (N MASS)

0X (N IRR)

OXEN (¥ (OX (NU PL)))

B. NPR - Proper Noun

Proper nouns have a very simple structure, since they do not
have inflectional forms or features. The basic entry for a proper
noun is (NPR *), although it is possible to use the root retrieving
routines to provide a SUBSTITUTE effect. Thus if JOSEPH were defined
as (NPR *), (NPR (JOSEPH)) and (SUBSTITUTE ((JOSEPH))) would be

equivalent definitions for JOE.

C. V = Verb

The inflectional structure of verbs is more complicated than
that of nouns. A verb is marked as a tensed form (present or past),
an infinitive, and/or a participle (present or past). In addition,
if the verb is marked as tensed, it must also be marked for person

and number. These features are specified in the following way:

(TNS PRESLENT)

(TNS PAST) for tensed forms

(PRESPART T') for present participles

(PASTPART T) for past participles

(UNTENSED T) for untensed infinitive forms

(PNCODE 3SG) for third-person singular forms

(PNCODE X35G) for every thing except the third-person singular
(PNCODE ANY) for all person-number combinations

If the value of an inflectional feature is T, the T need not be
specified. Thus, the following abbreviations may be used where
appropriate: (PRESPART), (PASTPART), (UNTENSED). In addition, the
grammar has been designed so that a tensed verb that has no PNCODL
specified will be interpreted as if it has (PNCODE ANY) permitting

the elimination of this very common feature.

As for nouns, the atom * is not a permissible property value.
For other legal atomic values, the default features are

(TNS PRESENT) (PNCODE X3SG) (UNTENSED), which correspond to

the normal behavior of the infinitive (root) form. The legal atomic

values are (note the absence of an initial hyphen):

S-D regular verbs which add S for the third-singular, D
for the past tense and past participle, and ING for

the present participle (e.g. INCLUDE, INCLUDES, INCLUDED,
INCLUDED, INCLUDING).

S-ED regular verbs like the above except that they add ED
for the past tense and past participle (e.g. HAPPEN,
HAPPENS, HAPPENED, HAPPENED, HAPPENING)

ES-ED the same as S-ED except that the third-singular is
formed with ES. Verbs that change Y to I and add ES

or ED are also included. (e.g. PASS, PASSES, PASSED,
PASSED, PASSING, STUDY, STUDIES, STUDIED, STUDIED,
STUDYING)

IRR infinitive forms of irreqular verbs--all the other
forms must have separate entries. (e.g. GIVE, MAKE,
RUN)

Illustrative examples:

INCLUDE (V S-D)
HAPPEN (V S-ED)

GIVE (V IRR)
GAVE (V (GIVE (TNS PAST) (PNCODE ANY)))
SAW (V ((SEE (TNS PAST))

(SAW (TNS PRESENT) (PNCODE X3SG) (UNTENSED))))
SAWED (V (SAW (TNS PAST)))

Notice that if the root of one verb and an inflected form of another
are homographs (i.e. they are spelled the same), the reqular in-
flectional machinery cannot be used--all the forms of the homographic
root must be explicitly defined. There is one other restriction:

the features (UNTENSED) and (PASTPART) are mutually exclusive, so
that the few verbs whose infinitive and past participle are the same

must be handled specially, as illustrated below.

(RUN (V ((RUN (TNS PRESENT) (PNCODE X3SG) (UNTENSED))
(RUN (PASTPART))))

RUN is thus defined as an ambiguous verb whose two interpretations
have the same root but different features.

D. ADJ - Adjective

Ordinary adjectives in English do not have any features, but
many of them have inflected comparative and superlative forms.
These are marked by the features (COMPARATIVE T) and (SUPERLATIVE T),
which may be abbreviated (COMPARATIVE) and (SUPERLATIVE), Adjectives
which do not admit these inflections in a regular way are simply
marked as (ADJ *), for example, EXTREME and ESSENTIAL. Otherwise,

adjectives can have the atomic values

R-ST if they form the comparative by adding R and the
superlative by adding ST (e.g. CLOSE, CLOSER, CLOSELST)

ER-EST if they add ER and EST instead (e.g. PINK, PINKER, PINKEST)
Adjectives which change Y to I are also included.

These atomic values do not supply any default features for the root

form. Examples:

HAPPY (ADJ ER-EST)

GOOD (ADJ *)

BETTER (ADJ (GOOD (COMPARATIVEL)))
BEST (ADJ (GOOD (SUPERLATIVE)))

It should be noted that nouns which can be used as modifiers need
not be categorized as adjectives, since the grammar recognizes noun-

noun modification.

E. ADV - Adverb

Like adjectives, adverbs can also be inflected for comparative
and superlative, but the root itself has no features. Thus, irregu-
lar adverbs or adverbs that do not have comparatives or superlatives
are marked (ADV *), while the regular forms use the same atomic value

codes (ER-EST and R-ST) as adjectives. Examples:

HARD (ADV ER-EST)
FAR (ADV *)
FURTHER (ADV (FAR (COMPARATIVE)))

Iv. Szntactic Features

The property FEATURES is required in the definitions of root
forms to specify the syntactic behavior of the root and all its
inflected forms. At present, the grammar only examines FEATURES
on verbs so that the property need not appear on roots in other
categories. The value of FEATURES is a simple unordered list of
atoms, each one denoting a different characteristic. The features

which may be included for verbs are:

TRANS if the verb can be transitive (e.g. HIT, KICK)
INTRANS if the verb can be intransitive (e.g. WALK, GO)
INDOBJ if the verb can take an indirect object

(e.g. GIVE, BUY, TELL)
COPULA if the verb can be a copular (i.e. can be followed

by a predicate adjective) (e.g. BE, SEEM, APPLAR)

PASSIVE if the verb can be passivized (e.g. DISCOVER, FIND)
(Note: all PASSIVE verbs are TRANS, but not all
TRANS verbs are PASSIVE--e.g. COST)

Section VII contains a set of sentence frames which define these

verbal characteristics.

With one exception, if a feature does not appear in the list,
the grammar assumes that the verb does not have the characteristic
in question. Thus, if the root WALK is not marked INTRANS, the
grammar will not be able to parse the sentence "John walked." The
exception is that in the special case when the only features a verb
has are TRANS and PASSIVE, the whole FEATURES property may be ommitted.

The following two definitions for KICK are equivalent:

KICK (V S-ED FEATURES (PASSIVE TRANS))
KICK (V S-ED)

Since a large proportion of verbs have only these two features, this
convention reduces the total size of the dictionary. Examples

of complete dictionary entries are:

GIVE (V IRR FEATURZS (PASSIVE TRANS INDOBJ))
GIVEN (V (GIVE (PASTPART)))
GO (V IRR FEATURES (INTRANS))

BECOME (V IRR FEATURES (COPULA))

V. SUBSTITUTE and COMPOUNDS

The properties SUBSTITUTE and COMPCOUNDS change the words in
the sentence, before the grammar has even looked at them. If none
of the substitutions or compounds lead to a valid parse, the parser
restores the sentence to its original form. In this case, the
grammar examines the lexical category information in the word's defi-
nition; thus a definition can contain lexical category properties as
well as SUBSTITUTE and COMPOUNDS.

The value of SUBSTITUTE is a list of lists, each list being a
possible string to be substituted for the word. Whereas COMPOUNDS
causes a sequence of words to be replaced by a single word,
SUBSTITUTE can have the opposite effect: If SRO were define as
(SUBSTITUTE ((STANDING ROOM ONLY)), every occurrence of SRO in a

sentence would effectively lengthen the string to be parsed.

As indicated earlier, COMPOUNDS provides a means of mapping
idioms and compownd expressions (secquences of words whose joint
meaning is not simply the composition of the meanings of the indi-
vidual words) into a single word representing the joint meaning.
Thus in the earlier example, the sequence UNITED STATLS was mapped
into the "word" UNITED-STATES, which was then explicitly defined.
The COMPOUNDS mechanism is general enough to handle arbitrarily

long sequences and sequences which are identical to the initial

segments of longer sequences (e.g. UNITED STATES and UNITED STATES
AIR FORCE). The various possibilities are expressed in the value
of the COMPOUNDS property.

The compounds value (defined in Section VI can be thought of
as a tree structure rooted in the word being defined (e.g. UNITED).
Non-terminal nodes in the tree specify intermediate words in the
compound expression, so that the non-terminal nodes encountered in
tracing a path in the tree down from the root denote the sequence
itself. The terminal node at the bottom of the path is the joint
meaning of the sequence. There is a terminal node under each non-
terminal to specify the joint meaning of subsequences that can occur
independently; if the terminal is the atom NIL, then the non-terminal
in question cannot be the last word in a sequence. The following
example shows the value for COMPOUNDS and the corresponding tree
structure necessary to recognize the expressions UNITED STATES,
UNITED STATES AIR FORCE, UNITED STATES NAVY, and UNITED FRUIT
COMPANY :

(UNITED COMPOUNDS ((STATES UNITED-STATES (AIR NIL (FORCE USAF))
(NAVY USN))
(FRUIT NIL (COMPANY UFC))))

UNITED

STATES \FRUIT

UNITED-STATES // IR NTVY NIL COMrANY
NIL FORCE USN UFC

USAF
Of course, UNITED-STATES, USAF, USN, and UFC must be defined

separately (probably as (NPR *)).

VI. Dictionary Formats

The following is a formal specification of the syntax for
dictionary definitions. The notation is similar to that used
to describe context-free languages, except that nonterminal
symbols are enclosed in angle-brackets and alternations are rep-
resented by the vertical bar. The only addition is the Kleene
* operator, used to denote an arbitrarily (zero or more times)

repeatable constituent.

(1) <definition> -+ (<definiens> <pair>*)

(2) «<pair> + <lexical category><legical category value>
SUBSTITUTE <substitute value> |
FEATURES <feature value>
COMPOUNDS <compounds value>

(3) <legical category> » N | V | ADJ | ADV ...
(4) <legical category value> » <morphology code> |
"Wan I
<root-feature list> |
(<root-feature list> *)
(5) <root-feature list> -+ (<root> <inflectional feature> *)
(6) <inflectional feature> =+ (<inflectional feature name>
<inflectional-feature value>)

(7) <substitute value> - (<substitution> *)

(8) <substitution> - (<word> *)

(9) <feature value> * (<feature> *)

(10) <compounds value> -+ (<tree> *)

(11) <tree> > (<word> <result> <tree> *)
(12) <result> > <word> | NIL

<lexical category>, <morphology code>, <root>, <inflectional-
feature names, <inflectional-feature value>, <word>, and <feature?>

are all atoms as specified in the text. <«definiens> is the word

being defined.

VII. Frames for Syntactic Features

The following is a suggestive set of sentence frames for the
determination of the syntactic features which must be specified
in the definition of verbs. If a verb can fit into the open slot
in a frame, then the root form of the verb must be marked with the
syntactic feature (under the property FEATURES) with which the
frame is associated. It should be noted that for some verbs it
might be necessary to change the pronouns or substitute other noun-
phrases in the frame in order to arrive at meaningful sentences; if
a grammatical sentence results after these modifications, the verb

must still be marked with the feature in question.

A. TRANS: A verb must be marked TRANS if it can be immediately
followed by a direct object noun-phrase.
They it. (e.g. "hit" but not "go")

B. INTRANS: A verb isintransitive if it does not require a direct
object. (Note: a verb can be both TRANS and INTRANS,
if the direct object is optional.)

They . (e.g. "ran", but not "surprised")

C. 1INDOBJ: A verb can take an indirect object and must be marked
INDOBJ if (1) it can be followed by two noun-phrases,
and (2) if interchanging the two noun-phrases and in-
serting the word "to" between them does not change the
meaning of the sentence.

They him it. (e.g. "gave) but not "hit")
They it to him.

E.12

D. COPULA: A verb is a copula if it can be immediately followed

by an adjective which is predicated of the subject.

They tall. (e.g. "are}, but not "weigh")

E. PASSIVE: Transitive verbs which can be passivized must be
marked both TRANS and PASSIVE.

He them, (e.g. "see (saw, seen)
They were by him. but not "cost")

hppendix F
THE RETRIEVAL COMPONENT
I. 1Introduction
II. The LSNLIS Data Base
AR. Overview
B, File Handling
1. Fixed-record-lengtn-files
1.1 file description information
1.2 <coding arrays
1.3 file indexing
2, Free-record-lenqgth files
C. In-Core Data
III. Building the Lower Fork and Data Files
IV, Urdatina the Data Base
R. ''ser Requests
T+ Addina anpalvses
2, Deleting analyses
3. Alterinn analyses
4, Printina the analiysis files

B, Ad4ing New Data Files

THE RETRIEVAL COMPONENT

I. INTRODUCTION

In this appendix we will! give a detailed description of
the general operation of the LSNLIS retrieval component and
of the data structures and Storage techniques used in the
system, We make no claims that the £file storage and
accessing techniagues used are the best ones (or even good
ones) for our data base, but rather, we include this
appendix for the sake of giving a complete specification of
the current system, Since the goals of the LSNLIS project
involved the lanaouage processing capability rather than file
structures and data management techniques, We have adopted,
wherever possible, techniques wnich are straight-forward and
convenient, angd ve have capitalized extensively on
facilities of TENEX such as the ©page-mapping facility and

random file I1I/0,

The current data base consists of two files compiled by
Dr, Jeffrey Warner at the Manned Spacecraft Center in
Houston, The first is a formatted, fixed-record-length file
of chemical analysis data on the Apollo 11 samples and the
second is an inverted index bhy keypnrases to a small
collection of documents, The former file is the data base
of primary interest since it Contains tne specific factual
material to answer Qquestiois, The second file was a

peripheral effort in order to combine bota fact retrieval

and document retrieval in the same natural language querying
facility., The current state of the keyphrase file would be
inadequate for an effective document retrieval system since
the keyphrases were oriaginally extracted by machine and
there 1is no standardization of vocabulary (or even of
inflection) in the file and we have not introduced any

compensating synonym facility.

In the NASA LSNLIS, the retrieval component resides in
a Separate for¥ of the TENEX time-sharing system which we
will call the lover fork or retrieval fork, This fork. is
under the contro) of the langUage processang fork, When the
semantic interpretation compolent has finished constructing
the interpretation of a request, it calls a function EXECUTE
with this interpretation as 1ts argument, EXECUT®E ©passes
the 1interpretation to the retrieval <fork Dby means of a
buffer file QBUF (for queryY tuffer) and wvakes up the
retrieval fork, when the retrieval fork has completed
processing the agnery, it will nave wrijtten the answver(s)
onto a file HITFILE, and it will then write the number ot
hits into a buffer file ABUF and return control to the upper
fork., The function EXECUTE then prints out the answer it
there are fewver than 5 nits, Oor notif:es the user of the
numper of hits otherwise and asks L'm wnether he wishes to
see the answvers, The function EXECUTE, tihus serves as the

access port to the lower forx.

II. THE LSNLIS DATA BASE

A, OVERVIEW

In the first LSNLIS prototype demonstrated in Houston
in January, 1971, the entire data base was contained in the
virtual core memory of the retrieval <component, This
system, while adequate for the demonstration, placed a limit
of approximately 120K on the sSize of the data base that
could be stored due to the 1limit of 256K for the total
retrieval component, The Apollo11 data which the system

then contained nearly filled that capacity.

In the current orototype, the data base has been moved
from the virtual core memory to external disk file storage,
This facility provides access to any number of independent
disk files, each of which mMmay contaln up to 256K words of
data, The current system coOntains <conventions for both
fixed and variable record-length files, AccesSing of the
files uses both the page maPping facjility ot the TENEX

system and its random file I/0 capability,

Due to our use of the hardware page-mapping facility in
TENEX and more detailed indexing, moving the chemical
analysis data base to external files has not hurt the
retrieval combponent's perfoImance time, With the function
optimization that has accompahied this major change in the
retrieval component, the aVerage retrieval time for a

request has actually been reduced, For example, the form

constructed from the request, “Give me chromite analyses for
samples containing chromite,"”, now takes 11.5 seconds, on
the average, (828 conses), to execute, whereas previously it
took 24 seconds (1925 conses), "“Potassium / Rubidium ratios
for breccias"” executes in 22 seconds (1832 conses), rather
than 28 seconds (654 conses), (Part of the increase in
speed was due to the correction of a bug in the original
retrieval program which caused wasted sSearching to take

place,)

To avoid the nuisance of constant, timezconsuming
updates to large files, we have carried over the "main table
- patch table" idea from the pPrevious system into the new
onhe, Each main file may have associated with it a patch
file, to which updates may be added sequentially,
Facilities are then nprovided tor sorting tne patch file into
the same order as the main file, merging tne two files and
resetting the wpatch £f1le to accept a new set of updates,
The retrieval functions have been written to search for
information in the ©vpatch £file, before going on to 1ts
associated main file, ITn this way, new information or

corrected information 1s found first,

In the nev gsystem, we haVe again emploYed field coding
and record pacting wherever possible to reduce the size of
the files, In the Apollol1: chemical analysis table, each

line (or record) contains seven fields (for the sample

number, phase, constituent, content, unit, <citation, and
tag). If each of these entries were represented by one
machine word, then an entry would requjre at least seven
machine words of storage per record, However, the numbper of
different possible values for a given field is wusually far
less than the number of distinct numbers that can occupy a
machine word (36 bits) or even a LISP pointer (18 bits),
Thus, we <can save significant space bY assigning each
possible value for a given field a unidque code number ’and
reserving for that field Just enough space to hold the
largest such number (rlus perfnaps some margin for growth),
Such field coding significantly reduces the number of bits
required for each field, Record packing invclves compacting
a record to fit into the minimum number of words possible,
Several fields may be assigned locat:ons within a single
word, rather than each field reaguiring one or more words to
itself, 1In the current sYstem, the only type of field which
still requires a full word to itself is one which contains a
real number, The records of the Apollo 11 £file, Wwith 7
fields per record, require only 3 macnine words per record

of storaae,

A code number does not have to be decoded until the
field of the record in which it is leccated 1s accessed, The
decoding process is a very simple one and does not add
appreciablvy to the cost of retrieving the information, The

saving in file space is immenSe, The original symbolic file

of Apollo 11 chemical analysis i{nformation has been reduced
by a facto